[1] Khan Md. N., et al. Energy and Exergy Analysis of Vapour Compression Refrigeration System with R12, R22, R134a. International Journal of Emerging Technology and Advanced Engineering 2015:5:210–216.
[3] Lallouche A., Kolodyaznaya V., Boulkrane M., Baranenko D. Low Temperature Refrigeration as an Alternative Anti-Pest Treatment of Dates. Environmental and Climate Technologies 2017:20(1):24–35. doi:10.1515/rtuect-2017-000810.1515/rtuect-2017-0008
[4] Bajcinovci B., Jerliu F. Achieving Energy Efficiency in Accordance with Bioclimatic Architecture Principles. Environmental and Climate Technologies 2016:18(1):54–63. doi:10.1515/rtuect-2016-001310.1515/rtuect-2016-0013
[10] Pons M., et al. Energy analysis of two-phase secondary refrigeration in steady-state operation, part 2: Exergy analysis and effects of phase change kinetics. Energy 2018:161:1291–1299. doi:10.1016/j.energy.2018.07.04410.1016/j.energy.2018.07.044
[11] Valencia G., et al. Comparative Evaluation of Different Refrigerants on a Vapor Compression Refrigeration System via Exergetic Performance Coefficient Criterion. Contemporary Engineering Sciences 2017:10:691–702. doi:10.12988/ces.2017.776310.12988/ces.2017.7763
[12] Belman-Flores J. M., et al. Exergy assessment of a refrigeration plant using computational intelligence based on hybrid learning methods. International Journal of Refrigeration 2018:88:35–44. doi:10.1016/j.ijrefrig.2018.01.00410.1016/j.ijrefrig.2018.01.004
[14] McKenna R. C. Industrial energy efficiency: interdisciplinary perspectives on the thermodynamic, technical and economic constraints. Phd thesis. Bath: University of Bath, 2009.
[15] Aghbashlo M., Mobli H., Rafiee S., Madadlou A. A review on exergy analysis of drying processes and systems. Renewable and Sustainable Energy Reviews 2013:22:1–22. doi:10.1016/j.rser.2013.01.01510.1016/j.rser.2013.01.015
[17] Balkan F., Colak N., Hepbasli A. Performance evaluation of a triple-effect evaporator with forward feed using exergy analysis. International Journal of Energy Research 2005:29(5):455–470. doi:10.1002/er.107410.1002/er.1074
[19] Zhang Y., Munir M. T., Udugama I., Yu W., Young B. R. Modelling of a milk powder falling film evaporator for predicting process trends and comparison of energy consumption. Journal of Food Engineering 2018:225:26–33. doi:10.1016/j.jfoodeng.2018.01.01610.1016/j.jfoodeng.2018.01.016
[20] Choi H. S., Lee T. J., Kim Y. G., Song S. L. Performance improvement of multiple-effect distiller with thermal vapor compression system by exergy analysis. Desalination 2005:182(1–3):239–249. doi:10.1016/j.desal.2005.03.01810.1016/j.desal.2005.03.018
[21] Morosuk T., Tsatsaronis G., Schult M. Conventional and advanced exergetic analyses: theory and application. Arabian Journal for Science and Engineering 2013:38(2):395–404. doi:10.1007/s13369-012-0441-910.1007/s13369-012-0441-9
[22] Petrakopoulou F., Tsatsaronis G., Morosuk T., Carassai A. Conventional andadvanced exergetic analyses applied to a combined cycle power plant. Energy 2012:41(1):146–152. doi:10.1016/j.energy.2011.05.02810.1016/j.energy.2011.05.028
[23] Vučkovič G. D., Stojiljkovič M. M., Vukič M. V., Stefanovič G. M., Dedeič E. M. Advanced exergy analysis and exergoeconomic performance evaluation of thermal processes in an existing industrial plant. Energy Conversion and Management 2014:85:655–662. doi:10.1016/j.enconman.2014.03.04910.1016/j.enconman.2014.03.049