Have a personal or library account? Click to login
Measurement and Prediction of Density and Viscosity of Different Diesel-Vegetable Oil Binary Blends Cover

Measurement and Prediction of Density and Viscosity of Different Diesel-Vegetable Oil Binary Blends

By: Mert Gulum and  Atilla Bilgin  
Open Access
|Aug 2019

References

  1. [1] Elegbede I., Matemilola S., Kies F., Fadeyi O., Saba A., Rios P. D. L., Adekunbi F., Lawal-Are A., Fashina-Bombata H. Risk analysis and development of algae biofuel from aquatic and terrestrial systems. Energy Procedia 2017:128:324–331. doi:10.1016/j.egypro.2017.08.32010.1016/j.egypro.2017.08.320
  2. [2] Sahin Z., Kurt M., Durgun O. Experimental investigation of gasoline fumigation for different compression ratios in a diesel engines. Energy Procedia 2018:147:268–276. doi:10.1016/j.egypro.2018.07.09110.1016/j.egypro.2018.07.091
  3. [3] Cakmak A., Kapusuz M., Ganiyev O., Ozcan H. Effects of methyl acetate as oxygenated fuel blending on performance and emissions of SI engine. Environmental and Climate Technologies 2018:22:55–68. doi:10.2478/rtuect-2018-000410.2478/rtuect-2018-0004
  4. [4] Pramanik K. Properties and use of jatropha curcas oil and diesel fuel blends in compression ignition engine. Renewable Energy 2003:28(2):239–248. doi:10.1016/S0960-1481(02)00027-710.1016/S0960-1481(02)00027-7
  5. [5] Dorado M. P., Ballesteros E., Arnal J. M., Gomez J., Lopez F. J. Exhaust emissions from a diesel engine fueled with transesterified waste olive oil. Fuel 2003:82(11):1311–1315. doi:10.1016/S0016-2361(03)00034-610.1016/S0016-2361(03)00034-6
  6. [6] Bilgin A., Gulum M. Effects of various transesterification parameters on the some fuel properties of hazelnut oil methyl ester. Energy Procedia 2018:147:54–62. doi:10.1016/j.egypro.2018.07.03310.1016/j.egypro.2018.07.033
  7. [7] Gulum M., Bilgin A. An experimental optimization research of methyl and ethyl esters production from safflower oil. Environmental and Climate Technologies 2018:22:132–148. doi:10.2478/rtuect-2018-000910.2478/rtuect-2018-0009
  8. [8] Demirbas A. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Progress in Energy and Combustion Science 2005:31(5–6):466–487. doi:10.1016/j.pecs.2005.09.00110.1016/j.pecs.2005.09.001
  9. [9] Ma F., Hanna M. A. Biodiesel production: a review1. Bioresource Technology 1999:70:1–15.10.1016/S0960-8524(99)00025-5
  10. [10] Wang Y. D., Al-Shemmeri T., Eames P., McMullan J., Hewitt N., Huang Y., Rezvani S. An experimental investigation of the performance and gaseous exhaust emissions of a diesel engine using blends of a vegetable oil. Applied Thermal Engineering 2006:26(14–15):1684–1691. doi:10.1016/j.applthermaleng.2005.11.01310.1016/j.applthermaleng.2005.11.013
  11. [11] Altın R., Çetinkaya S., Yücesu H. S. The potential of using vegetable oil fuels as fuel for diesel engines. Energy Conversion and Management 2001:42(5):529–538. doi:10.1016/S0196-8904(00)00080-710.1016/S0196-8904(00)00080-7
  12. [12] Nwafor O. M. I. Emission characteristics of diesel engine running on vegetable oil with elevated fuel inlet temperature. Biomass and Bioenergy 2004:27(5):507–511. doi:10.1016/j.biombioe.2004.02.00410.1016/j.biombioe.2004.02.004
  13. [13] Pyrde E. H. Vegetable oil as diesel fuel: overview. JOCS 1983:60:1557–1558.10.1007/BF02666584
  14. [14] Fassinou W. F., Sako A., Fofana A., Koua K. B., Toure S. Fatty acids composition as a means to estimate the high heating value (HHV) of vegetable oils and biodiesel fuels. Energy 2010:35(12):4949–4954. doi:10.1016/j.energy.2010.08.03010.1016/j.energy.2010.08.030
  15. [15] Pugazhvadivu M., Jeyachandran K. Investigations on the performance and exhaust emissions of a diesel engine using preheated waste frying oil as fuel. Renewable Energy 2005:30(14):2189–2202. doi:10.1016/j.renene.2005.02.00110.1016/j.renene.2005.02.001
  16. [16] Rakopoulos C. D., Rakopoulos D. C., Hountalas D. T., Giakoumis E. G., Andritsakis E. C. Performance and emissions of bus engine using blends of diesel fuel with bio-diesel of sunflower or cottonseed oils derived from Greek feedstock. Fuel 2008:87(2):147–157. doi:10.1016/j.fuel.2007.04.01110.1016/j.fuel.2007.04.011
  17. [17] Agarwal A. K., Rajamanoharan K. Experimental investigations of performance and emissions of Karanja oil and its blends in a single cylinder agricultural diesel engine. Applied Energy 2009:86(1):106–112. doi:10.1016/j.apenergy.2008.04.00810.1016/j.apenergy.2008.04.008
  18. [18] Agarwal D., Kumar L., Agarwal A. K. Performance evaluation of a vegetable oil fuelled compression ignition engine. Renewable Energy 2008:33(6):1147–1156. doi:10.1016/j.renene.2007.06.01710.1016/j.renene.2007.06.017
  19. [19] Nwafor O. M. I. The effect of elevated fuel inlet temperature on performance of diesel engine running on neat vegetable oil at constant speed conditions. Renewable Energy 2003:28(2):171–181. doi:10.1016/S0960-1481(02)00032-010.1016/S0960-1481(02)00032-0
  20. [20] Bajpai S., Sahoo P. K., Das L. M. Feasibility of blending karanja vegetable oil in petro-diesel and utilization in a direct injection diesel engine. Fuel 2009:88(4):705–711. doi:10.1016/j.fuel.2008.09.01110.1016/j.fuel.2008.09.011
  21. [21] Gülüm M., Bilgin A. Measurements and empirical correlations in predicting biodiesel-diesel blends’ viscosity and density. Fuel 2017:199:567–577. doi:10.1016/j.fuel.2017.03.00110.1016/j.fuel.2017.03.001
  22. [22] Gülüm M., Bilgin A. Two-term power models for estimating kinematic viscosities of different biodiesel-diesel fuel blends. Fuel Processing Technology 2016:149:121–130. doi:10.1016/j.fuproc.2016.04.01310.1016/j.fuproc.2016.04.013
  23. [23] Ozcanlı M., Keskin A., Aydın K. Biodiesel production from terebinth (pistacia terebinthus) oil and its usage in diesel engine. International Journal of Green Energy 2011:8:518–528. doi:10.1080/15435075.2011.58876610.1080/15435075.2011.588766
  24. [24] Gülüm M., Bilgin A. A research on reaction parameters about hazelnut oil methyl ester production. In: Dincer I, Colpan CO, Kizilkan O, editors. Exergetic, energetic and environmental dimensions. Amsterdam, 2017.10.1016/B978-0-12-813734-5.00050-0
  25. [25] Alptekin E., Canakci M. Determination of the density and the viscosities of biodiesel-diesel fuel blends. Renewable Energy 2008:33(12):2623–2630. doi:10.1016/j.renene.2008.02.02010.1016/j.renene.2008.02.020
  26. [26] Benjumea P., Agudelo J., Agudelo A. Basic properties of palm oil biodiesel-diesel blends. Fuel 2008:87(10–11):2069–2075. doi:10.1016/j.fuel.2007.11.00410.1016/j.fuel.2007.11.004
  27. [27] Pratas M. J., Freitas S. V. D., Oliveira M. B., Monteiro S. C., Lima§ Á. S., Coutinho J. A. P. Biodiesel density: experimental measurements and prediction models. Energy & Fuels 2011:25(5):2333–2340. doi:10.1021/ef200212410.1021/ef2002124
  28. [28] Ramírez-Verduzco L. F., García-Flores B. E., Rodríguez-Rodríguez J. E., Jaramillo-Jacob A. D. R. Prediction of the density and viscosity in biodiesel blends at various temperatures. Fuel 2011:90(5):1751–1761. doi:10.1016/j.fuel.2010.12.03210.1016/j.fuel.2010.12.032
  29. [29] Gülüm M., Bilgin A. Density, flash point and heating value variations of corn oil biodiesel-diesel fuel blends. Fuel Processing Technology 2015:134:456–464. doi:10.1016/j.fuproc.2015.02.02610.1016/j.fuproc.2015.02.026
  30. [30] Gülüm M., Bilgin A. A comprehensive study on measurement and prediction of viscosity of biodiesel-diesel-alcohol ternary blends. Energy 2018:148:341–361. doi:10.1016/j.energy.2018.01.12310.1016/j.energy.2018.01.123
  31. [31] Gülüm M., Bilgin A., Çakmak A. V. Comparison of optimum reaction parameters of corn oil biodiesels produced by using sodium hydroxide (NaOH) and potassium hydroxide (KOH). Journal of the Faculty of Engineering and Architecture of Gazi University 2015:30(3):503–511.10.17341/gummfd.81237
  32. [32] Bilgin A., Gülüm M., Koyuncuoglu I., Nac E., Cakmak A. V. Determination of transesterification reaction parameters giving the lowest viscosity waste cooking oil biodiesel. Social and Behavioral Sciences Procedia 2015:195:2492–2500. doi:10.1016/j.sbspro.2015.06.31810.1016/j.sbspro.2015.06.318
  33. [33] Holman J. P. Experimental methods for engineers, seventh ed. New York: McGraw-Hill, 2001.
  34. [34] Yoon S. H., Park S. H., Lee C. S. Experimental investigation on the fuel properties of biodiesel and its blends at various temperatures. Energy & Fuels 2008:22:652–656. doi:10.1021/ef700215610.1021/ef7002156
  35. [35] Baroutian S., Aroua M. K., Raman A. A. A., Sulaiman N. M. N. Viscosities and densities of binary and ternary blends of palm oil + palm biodiesel + diesel fuel at different temperatures. J. Chem. Eng. Data 2010:55:504–507. doi:10.1021/je900299x10.1021/je900299x
  36. [36] Fahd M. E. A., Lee P. S., Chou S. K., Wenming Y., Yap C. Experimental study and empirical correlation development of fuel properties of waste cooking palm biodiesel and its diesel blends at elevated temperatures. Renewable Energy 2014:68:282–288. doi:10.1016/j.renene.2014.02.00710.1016/j.renene.2014.02.007
DOI: https://doi.org/10.2478/rtuect-2019-0014 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 214 - 228
Published on: Aug 3, 2019
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Mert Gulum, Atilla Bilgin, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.