[1] Scharf M. E., Tartar A. A. Termite digestosomes as sources for novel lignocellulases. Biofuels Bioproducts and Biorefining 2008:2:540–552. doi:10.1002/bbb.10710.1002/bbb.107
[2] Jouquet P., Traoré S., Choosai C., Hartmann C., Bignell D. Influence of termites on ecosystem functioning. Ecosystem services provided by termites. European Journal of Soils Biology 2011:47(4):215–222. doi:10.1016/j.ejsobi.2011.05.00510.1016/j.ejsobi.2011.05.005
[3] Crestini C., Crucianelli M., Orlandi M., Saladino R. Oxidative strategies in lignin chemistry: A new environmental friendly approach for the functionalisation of lignin and lignocellulosic fibers. Catalysis Today 2010:156(1–2):8–22. doi:10.1016/j.cattod.2010.03.05710.1016/j.cattod.2010.03.057
[4] Pérez J., Muñoz-Dorado J., De La Rubia T., Martínez J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. International Microbiology 2002:5(2):53–63. doi:10.1007/s10123-002-0062-310.1007/s10123-002-0062-312180781
[5] Paliwal R., Rawat A. P., Rawat M., Rai J. P. N. Bioligninolysis: Recent updates for biotechnological solution. Applied Biochemisrty and Biotechnology 2012:167(7):1865–1889. doi:10.1007/s12010-012-9735-310.1007/s12010-012-9735-322639362
[6] Kassim A. S. M., Ishak N., Aripin A. M., Zaidel D. N. Potential Lignin Degraders Isolated from the Gut of Rhynchophorus Ferrugineus. International Journal of Sustainable Construction Engineering&Technology 2016:2(1):72–82. doi:10.2991/icmmse-16.2016.2210.2991/icmmse-16.2016.22
[8] Dashtban M., Schraft H., Syed T. A., Qin W. Fungal biodegradation and enzymatic modification of lignin. International Journal of Biochemisrty and Molecular Biology 2010:1(1):36–50.
[9] Kumar V., Singh S., Singh O. V. Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives. Journal of Industral Microbiology and Biotechnology 2008:35(5):377–391. doi:10.1007/s10295-008-0327-810.1007/s10295-008-0327-818338189
[10] Aunina Z., Bazbauers G., Valters K. Feasibility of Bioethanol Production From Lignocellulosic Biomass. Environmental and Climate Technologies 2010:4(1):11–5. doi:10.2478/v10145-010-0011-x10.2478/v10145-010-0011-x
[11] Romagnoli F., Blumberga D., Gigli E. Biogas from marine macroalgae: a new environmental technology – life cycle inventory for a further LCA. Environmental and Climate Technologies 2010:4(1):97–108. doi:10.2478/v10145-010-0024-510.2478/v10145-010-0024-5
[12] Bugg T. D. H., Ahmad M., Hardiman E. M., Rahmanpour R. Pathways for degradation of lignin in bacteria and fungi. Natural Product Reports 2011:28(12):1883–1896. doi:10.1039/C1NP00042J10.1039/C1NP00042J
[13] Chi Y., Hatakka A., Maijala P. Can co-culturing of two white-rot fungi increase lignin degradation and the production of lignin-degrading enzymes? International Biodeterioration&Biodegradation 2007:59(1):32–39. doi:10.1016/j.ibiod.2006.06.02510.1016/j.ibiod.2006.06.025
[14] Tuor U., Winterhalter K., Fiechter A. Enzymes of white-rot fungi involved in lignin degradation and ecological determinants for wood decay. Journal of Biotechnology 1995:41(1):1–17. doi:10.1016/0168-1656(95)00042-O10.1016/0168-1656(95)00042-O
[15] Fackler K., Gradinger C., Hinterstoisser B., Messner K., Schwanninger M. Lignin degradation by white rot fungi on spruce wood shavings during short-time solid-state fermentations monitored by near infrared spectroscopy. Enzyme and Microbial Technology 2006:39(7):1476–1483. doi:10.1016/j.enzmictec.2006.03.04310.1016/j.enzmictec.2006.03.043
[16] Singh P., Sulaiman O., Hashim R., Rupani P. F., Peng L. C. Biopulping of lignocellulosic material using different fungal species: A review. Reviews in Environmental cience and Bio/Technology 2010:9(2):141–151. doi:10.1007/s11157-010-9200-010.1007/s11157-010-9200-0
[17] Bugg T. D. H., Ahmad M., Hardiman E. M., Singh R. The emerging role for bacteria in lignin degradation and bio-product formation. Current Opinion in Biotechnology 2011:22(3):394–400.10.1016/j.copbio.2010.10.009
[19] Ahmad M., Taylor C. R., Pink D., Burton K., Eastwood D., Bending G. D., Bugg T. D. Development of novel assays for lignin degradation: comparative analysis of bacterial and fungal lignin degraders. Molecular BioSystems 2010:6(5):815–821. doi:10.1039/b908966g10.1039/b908966g20567767
[20] Niladevi K. N., Jacob N., Prema P. Evidence for a halotolerant-alkaline laccase in Streptomyces psammoticus: Purification and characterization. Process Biochemistry 2008:43(6):654–660. doi:10.1016/j.procbio.2008.02.00210.1016/j.procbio.2008.02.002
[21] Bandounas L., Wierckx N. J., De Winde J. H., Ruijssenaars H. J. Isolation and characterization of novel bacterial strains exhibiting ligninolytic potential. BMC Biotechnology 2011:11(1):94. doi:10.1186/1472-6750-11-9410.1186/1472-6750-11-94321292521995752
[22] Erden E., Ucar M. C., Gezer T., Pazarlioglu N. K. Screening for ligninolytic enzymes from autochthonous fungi and applications for decolorization of Remazole Marine Blue. Brazilian Journal of Microbioloy 2009:40:346–353. doi:10.1590/S1517-83822009000200002610.1590/S1517-838220090002000026376973424031371
[23] Obruca S. Marova I., Matouskova P., Haronikova A., Lichnova A. Production of lignocellulose-degrading enzymes employing Fusarium solani F-552. Folia Microbiologica 2012:57:221–227. doi:10.1007/s12223-012-0098-510.1007/s12223-012-0098-522488104
[24] Chen Y. H., Chai L. Y., Zhu Y. H., Yang Z. H., Zheng Y., Zhang H. Biodegradation of kraft lignin by a bacterial strain Comamonas sp. B-9 isolated from eroded bamboo slips. Journal of Applied Microbiology 2012:112(5):900–906. doi:10.1111/j.1365-2672.2012.05275.x10.1111/j.1365-2672.2012.05275.x22380656
[26] Wenzel M., Schönig I., Berchtold M., Kämpfer P., König H. Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis. Journal of Applied Microbiology 2002:92(1):32–40. doi:10.1046/j.1365-2672.2002.01502.x10.1046/j.1365-2672.2002.01502.x11849325
[27] Muwawa E. M., Budambula N. L. M., Osiemo Z. L., Boga H. I., Makonde H. M. Isolation and characterization of some gut microbial symbionts from fungus-cultivating termites (Macrotermes and Odontotermes spp.). African Journal of Microbiology Research 2016:10(26):994–1004.10.5897/AJMR2016.8060
[28] Ramin M., Alimon A. R., Abdullah N. Identification of cellulolytic bacteria isolated from the termite coptotermes curvignathus (Holmgren). Journal of Rapid Methods Automotion in Microbiology 2009:17(1):103–116. doi:10.1111/j.1745-4581.2009.00160.x10.1111/j.1745-4581.2009.00160.x
[29] Raj A., Krishna Reddy M. M., Chandra R.. Identification of low molecular weight aromatic compounds by gas chromatography-mass spectrometry (GC-MS) from kraft lignin degradation by three Bacillus sp. International Biodeterioration&Biodegradation 2007:59(4):292–296. doi:10.1016/j.ibiod.2006.09.00610.1016/j.ibiod.2006.09.006
[30] Anjaneya O., Souche S. Y., Santoshkumar M., Karegoudar T. B. Decolorization of sulfonated azo dye Metanil Yellow by newly isolated bacterial strains: Bacillus sp. strain AK1 and Lysinibacillus sp. strain AK2. Journal of Hazardous Materials 2011:190(1–3):351–358. doi:10.1016/j.jhazmat.2011.03.04410.1016/j.jhazmat.2011.03.04421470774
[32] Chaudhari A. U., Tapase S. R., Markad V. L., Kodam K. M. Simultaneous decolorization of reactive Orange M2R dye and reduction of chromate by Lysinibacillus sp. KMK-A. Journal of Hazardous Materials 2013:262:580–588. doi:10.1016/j.jhazmat.2013.09.00610.1016/j.jhazmat.2013.09.00624095998
[33] Saratale R. G., et al. Decolorization and detoxi fi cation of sulfonated azo dye C . I . Remazol Red and textile effluent by isolated Lysinibacillus sp. RGS. Journal of Bioscience and Bioengineering 2013:115(6):658–667. doi:10.1016/j.jbiosc.2012.12.00910.1016/j.jbiosc.2012.12.00923321576
[34] Taylor C. R., Hardiman E. M, Ahmad M., Sainsbury P. D., Norris P. R., Bugg T. D. H. Isolation of bacterial strains able to metabolize lignin from screening of environmental samples. Journal of Applied Microbiology 2012:113(3):521–530. doi:10.1111/j.1365-2672.2012.05352.x10.1111/j.1365-2672.2012.05352.x22642383
[35] Grunwald S., Pilhofer M., Hol, Ll W. Microbial associations in gut systems of wood- and bark-inhabiting longhorned beetles [Coleoptera: Cerambycidae]. Systematic and Applied Microbiology 2010:33(1):25–34. doi:10.1016/j.syapm.2009.10.00210.1016/j.syapm.2009.10.00219962263
[37] Hakala T. K., Lundell T., Galkin S., Maijala P., Kalkkinen N., Hatakka A. Manganese peroxidases, laccases and oxalic acid from the selective white-rot fungus Physisporinus rivulosus grown on spruce wood chips. Enzyme and Microbial Technology 2005:36(4):461–468. doi:10.1016/j.enzmictec.2004.10.00410.1016/j.enzmictec.2004.10.004
[39] Hashimah N., Rahman A, Aini N., Rahman A., Aziz S. A., Hassan M. A. Production of Ligninolytic Enzymes by Newly Isolated Bacteria from Palm Oil Plantation Soils. Bioresources 2013:8:6136–6150.10.15376/biores.8.4.6136-6150
[40] Liew C. Y., Husaini A., Hussain H., Muid , Liew K. C., Roslan H. A. Lignin biodegradation and ligninolytic enzyme studies during biopulping of Acacia mangium wood chips by tropical white rot fungi. World Journal of Microbiology and Biotechnology 2011:27(6):1457–1468. doi:10.1007/s11274-010-0598-x10.1007/s11274-010-0598-x25187145