[1] Neumegen R. A., Fernández-Alba A. R., Chisti Y. Toxicities of Trichlosan, Phenol, and Copper Sulfate in Activated Sludge. Environmental Toxicology 2005:20(2):160–164. doi:10.1002/tox.2009010.1002/tox.2009015793824
[2] Davies P. S., Murdoch F. The increasing importance of assessing toxicity in determining sludge health and management policy. Measurement and Control 2002:35(8):238–242. doi:10.1177/00202940020350080410.1177/002029400203500804
[5] Sanganyado E., Lu Z., Fu Q., Schlenk D., Gan J. Chiral pharmaceuticals: A review on their environmental occurrence and fate processes. Water Research 2017:124:527–542. doi:10.1016/j.watres.2017.08.00310.1016/j.watres.2017.08.00328806704
[6] Kraigher B., Kosjek T., Heath E., Kompare B., Mandic-Mulec I. Influence of pharmaceutical residues on the structure of activated sludge bacterial communities in wastewater treatment bioreactors. Water Research 2008:42(17):4578–4588. doi:10.1016/j.watres.2008.08.00610.1016/j.watres.2008.08.00618786690
[7] Vasiliadou I. A., Molina R., Martinez F., Melero J. A., Stathopoulou P. M., Tsiamis G. Toxicity assessment of pharmaceutical compounds on mixed culture from activated sludge using respirometric technique: The role of microbial community structure. Science of The Total Environment 2018:630:808–819. doi:10.1016/j.scitotenv.2018.02.09510.1016/j.scitotenv.2018.02.09529494982
[8] Rozitis Dz., Strade E. COD reduction ability of microorganisms isolated from highly loaded pharmaceutical wastewater pre-treatment process. Journal of Materials and Environmental Science 2015:6(2):507–512.
[10] Lefebvre O., et al. Biological treatment of pharmaceutical wastewater from the antibiotics industry. Water Science and Technology 2014:69(4):855–861. doi:10.2166/wst.2013.72910.2166/wst.2013.72924569287
[11] Ma K., Qin Z., Zhao Z., Zhao C., Liang S. Toxicity evaluation of wastewater collected at different treatment stages from a pharmaceutical industrial park wastewater treatment plant. Chemosphere 2016:158:163–170. doi:10.1016/j.chemosphere.2016.05.05210.1016/j.chemosphere.2016.05.05227262686
[14] Sirtori C., et al. Decontamination industrial pharmaceutical wastewater by combining solar photo-Fenton and biological treatment. Water Research 2009:43(3):661–668. doi:10.1016/j.watres.2008.11.01310.1016/j.watres.2008.11.013
[16] Oller I., Malato S., Sánchez-Pérez J. A. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination – A review. Science of Total Environment 2011:409(20):4141–4166. doi:10.1016/j.scitotenv.2010.08.06110.1016/j.scitotenv.2010.08.061
[18] Xiao Y., De Araujo C., Sze C. C., Stuckey D. C. Toxicity measurement in biological wastewater treatment processes: A review. Journal of Hazardous Materials 2015:286:15–29. doi:10.1016/j.jhazmat.2014.12.03310.1016/j.jhazmat.2014.12.033
[19] Hassan S. H. A., Van Ginkel S. W., Hussein M. A. M., Abskharon R., Oh S. E. Toxicity assessment using different bioassays and microbial biosensors. Environment International 2016:92–93:106–118. doi:10.1016/j.envint.2016.03.00310.1016/j.envint.2016.03.003
[20] Kungolos A. Evaluation of toxic properties of industrial wastewater using on-line respirometry. Journal of Environmental Science and Health. Part A, Toxic/hazardous Substances & Environmental Engineering 2005:40(4):869–880. doi:10.1081/ESE-20004829210.1081/ESE-200048292
[21] Gutiérrez M., Etxebarria J., de las Fuentes L. Evaluation of wastewater toxicity: comparative study between Microtox® and activated sludge oxygen uptake inhibition. Water Research 2002:36(4):919–924. doi:10.1016/S0043-1354(01)00299-810.1016/S0043-1354(01)00299-8
[22] Meherdad F., et al. Identification of Bacterial Population of Activated Sludge Process and Their Potentials in Pharmaceutical Effluent Treatment. British Biotechnology Journal 2014:4(3):317–324. doi:10.9734/BBJ/2014/791310.9734/BBJ/2014/7913
[24] Abdalla K. Z., Hammam G. Correlation between Biochemical Oxygen Demand and Chemical Oxygen Demand for Various Wastewater Treatment Plants in Egypt to Obtain the Biodegradability Indices. International Journal of Sciences: Basic and Applied Research 2014:13(1):42–48.
[26] Cui W., Cui Z., Zhang N., Ma Q., Liu L., Zhang X. A new efficient technology for refractory phenol-formaldehyde resin wastewater treatment. RSC Advances 2016:6(23):19078–19088. doi:10.1039/C5RA21502A10.1039/521502
[27] Agency for Toxic Substances and Disease Registry (ASTDR). Toxicological profile for Formaldehyde. Atlanta: U.S. Department of Health and Human Services, Public Health Service, 1999.
[28] Eiroa M., Vilar A., Amor L., Kennes C., Veiga M. C. Biodegradation and effect of formaldehyde and phenol on the denitrification process. Water Research 2005:39(2–3):449–455. doi:10.1016/j.watres.2004.09.01710.1016/j.watres.2004.09.017
[29] Agency for Toxic Substances and Disease Registry (ASTDR). Toxicological profile for Phenol. Atlanta: U.S. Department of Health and Human Services, Public Health Service, 2008.
[33] Heys K. A., Shore R. F., Pereira M. G., Jones K. C., Martin F. L. Risk assessment of environmental mixture effects. RSC Advances 2016:6(53):47844–47857. doi:10.1039/C6RA05406D10.1039/605406
[34] Kargi F. Enhanced biological treatment of saline wastewater by using halophilic bacteria. Biotechnology Letters 2002:24(19):1569–1572. doi:10.1023/A:102037942191710.1023/A:1020379421917
[37] Zhang X., Gao J., Zhao F., Zhao Y., Li Z. Characterization of a salt-tolerant bacterium Bacillus sp. from a membrane bioreactor for saline wastewater treatment. Journal of Environmental Sciences 2014:26(6):1369–1374. doi:10.1016/S1001-0742(13)60613-010.1016/S1001-0742(13)60613-0
[40] Negrea A., et al. Studies Concerning the Aluminium Ions Removal from Waste Water. Chemical Bulletin of "POLITEHNICA" University of Timişoara 2005:50:148–51.
[41] Pour P. G., Takassi M. A., Hamoule T. Removal of Aluminum from Water and Industrial Waste Water. Oriental Journal of Chemistry 2014:30(3):1365–1369. doi:10.13005/ojc/30035610.13005/ojc/300356
[42] Olaniran A. O., Balgobind A., Pillay B. Bioavailability of Heavy Metals in Soil: Impact on Microbial Biodegradation of Organic Compounds and Possible Improvement Strategies. International Journal of Molecular Sciences 2013:14(5):10197–10228. doi:10.3390/ijms14051019710.3390/ijms140510197367683623676353
[43] Jaishankar M., Tseten T., Anbalagan N., Mathew B. B., Beeregowda K. N. Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology 2014:7(2):60–72. doi:10.2478/intox-2014-000910.2478/intox-2014-0009442771726109881
[44] Rosseland B. O., Eldhuset T. D., Staurnes M. Environmental effects of aluminium. Environmental Geochemistry and Health 1990:12(1–2):17–27. doi:10.1007/BF0173404510.1007/BF0173404524202562
[45] Sparling D. W. Ecotoxicology Essentials: Environmental Contaminants and Their Biological Effects on Animals and Plants. London: Academic Press, 2016.
[46] Comber S. D. W., Gardner M. J., Churchley J. Aluminium speciation: implications of wastewater effluent dosing on river water quality. Chemical Speciation & Bioavailability 2005:17(3):117–128. doi:10.3184/09542290578277487410.3184/095422905782774874
[47] Klimek B., et al. The toxicity of aluminium salts to Lecane inermis rotifers: are chemical and biological methods used to overcome activated sludge bulking mutually exclusive? Archives of Environmental Protection 2013:39(3):127–138. doi:10.2478/aep-2013-002410.2478/aep-2013-0024