[1] Haywood J., Boucher O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Reviews of Geophysics 2000:38(4):513−543. doi:10.1029/1999RG00007810.1029/1999RG000078
[3] Gu Y., Liou K. N., Chen W., Liao H. Direct climate effect of black carbon in China and its impact on dust storms. Journal of Geophysical Research 2010:115:D00K14. doi:10.1029/2009JD01342710.1029/2009JD013427
[4] Papadimas C. D., et al. The direct effect of aerosols on solar radiation over the broader Mediterranean basin. Atmospheric Chemistry and Physics 2012:12(15):7165−7185. doi:10.5194/acp−12−7165−201210.5194/acp1271652012
[5] Hansen J., Sato M., Ruedy R. Radiative forcing and climate response. Journal of Geophysical Research. 1997:102(D6):6831−6864. doi:10.1029/96JD0343610.1029/96JD03436
[6] Schell B., Ackermann I. J., Hass H., Binkowski F. S., Ebel A. Modeling the formation of secondary organic aerosol within a comprehensive air quality model system. Journal of Geophysical Research: Atmospheres 2001:106(D22):28275−28293. doi:10.1029/2001JD00038410.1029/2001JD000384
[7] Liou K.-N., Ou S.-C. The role of cloud microphysical processes in climate: An assessment from a one-dimensional perspective. Journal of Geophysical Research: Atmospheres 1989:94(D6):8599−8607. doi:10.1029/JD094iD06p0859910.1029/JD094iD06p08599
[9] Borys R. D., Lowenthal D. H., Mitchell D. L. The relationships among cloud microphysics, chemistry, and precipitation rate in cold mountain clouds. Atmospheric Environment 2000:34(16):2593−2602. doi:10.1016/S1352−2310(99)00492−610.1016/S13522310(99)004926
[12] Penner J. E., Lister D., Griggs D. J., McFarland M., Dokken D. J. Aviation and the global atmosphere: a special report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 1999.
[13] Günther A., et al. MIPAS observations of volcanic sulfate aerosol and sulfur dioxide in the stratosphere. Atmospheric Chemistry and Physics 2018:18(2):1217−1239. doi:10.5194/acp−2017−53810.5194/acp2017538
[15] Stenchikov G. L., et al. Radiative forcing from the 1991 Mount Pinatubo volcanic eruption. Journal of Geophysical Research: Atmospheres 1998:103(D12):13837−13857. doi:10.1029/98JD0069310.1029/98JD00693
[17] Kiehl J. T., Briegleb B. P. The relative roles of sulfate aerosols and greenhouse gases in climate forcing. Science 1993:260(5106):311−4. doi:10.1126/science.260.5106.31110.1126/.260.5106.311
[18] Jiandong L., Jiangyu M., Wei-Chyung W. Anthropogenic Eastern Asian radiative forcing due to sulfate and black carbon aerosols and their time evolution estimated by an AGCM. Chinese Journal of Geophysics 2015:58(4):1103–1120.
[19] McCormick M. P., Thomason L. W., Trepte C. R. Atmospheric effects of the Mt Pinatubo eruption. Nature 1995:373(6513):399–404. doi:10.1038/373399a010.1038/373399a0
[20] Michelangeli D. V., Allen M., Yung Y. L. El Chichon volcanic aerosols: Impact of radiative, thermal, and chemical perturbations. Journal of Geophysical Research 1989:94(D15):18429. doi:10.1029/JD094iD15p1842910.1029/JD094iD15p1842911542195
[21] Boucher O., et al. Clouds and Aerosols. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013:571–657.10.1017/CBO9781107415324.016
[22] Jones A., Roberts L., Wood J., Johnson C. E. Indirect sulphate aerosol forcing in a climate model with an interactive sulphur cycle. Journal of Geophysical Research: Atmospheres 2001:106(D17):293−313. doi:10.1029/2000JD00008910.1029/2000JD000089
[23] Trenberth K., Dai A. Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophysical Research Letters 2007:34(15). doi:10.1029/2007GL03052410.1029/2007GL030524
[24] Friberg J., et al. Influence of volcanic eruptions on midlatitude upper tropospheric aerosol and consequences for cirrus clouds. Earth and Space Science 2015:2(7):285−300. doi:10.1002/2015EA00011010.1002/2015EA000110
[25] Ramanathan V., Carmichael G. Global and regional climate changes due to black carbon. Nature Geoscience 2008:1(4):221−227. doi:10.1038/ngeo15610.1038/ngeo156
[26] Forster P., et al. Climate Change 2007: The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007.
[27] Shindell D., Faluvegi G. Climate response to regional radiative forcing during the twentieth century. Nature Geoscience 2009:2(4):294−300. doi:10.1038/ngeo47310.1038/ngeo473
[28] Giorgi F., Bi X., Qian Y. Indirect vs. Direct Effects of Anthropogenic Sulfate on the Climate of East Asia as Simulated with a Regional Coupled Climate-Chemistry/Aerosol Model. Climatic Change 2003:58(3):345−376. doi:10.1023/A:102394601035010.1023/A:1023946010350
[29] Giorgi F., Bi X., Qian Y. Direct radiative forcing and regional climatic effects of anthropogenic aerosols over East Asia: A regional coupled climate-chemistry/aerosol model study. Journal of Geophysical Research: Atmospheres 2002:107(D20):AAC−7. doi:10.1029/2001JD00106610.1029/2001JD001066
[30] Qian Y., Giorgi F. Regional climatic effects of anthropogenic aerosols? The case of southwestern China. Geophysical Research Letters 2000:27(21):3521−3524. doi:10.1029/2000GL01194210.1029/2000GL011942
[31] Wu J., Luo Y., Wang W. The comparison of different simulation methods for the climate responses of the radiative forcing of anthropogenic sulfate aerosol over east Asia. Journal of Yunnan University 2005:27(4):323−331.
[32] Ekman A. M. L., Rodhe H. Regional temperature response due to indirect sulfate aerosol forcing: impact of model resolution. Climate Dynamics 2003:21(1):1−10. doi:10.1007/s00382−003−0311−y10.1007/s003820030311y
[34] García-Ortega E., López L., Sánchez J. L. Diagnosis and sensitivity study of two severe storm events in the Southeastern Andes. Atmospheric research 2009:93(1−3):161−178. doi:10.1016/j.atmosres.2008.10.03010.1016/j.atmosres.2008.10.030
[36] Miao Q., Geerts B. Airborne measurements of the impact of ground-based glaciogenic cloud seeding on orographic precipitation. Advances in Atmospheric Sciences 2013:30(4):1025−1038. doi:10.1007/s00376-012-2128-210.1007/s00376-012-2128-2
[37] Rasch P., et al. An overview of geoengineering of climate using stratospheric sulphate aerosols. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 2008:366(1882):4007−4037. doi:10.1098/rsta.2008.013110.1098/rsta.2008.013118757276
[38] Crutzen P. J. Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma? Climatic Change 2006:77(3−4):211−220. doi:10.1007/s10584−006−9101−y10.1007/s105840069101y
[39] Groisman P. Possible regional climate consequences of the Pinatubo eruption: an empirical approach. Geophysical Research Letters 1992:19(15):1603−1606. doi:10.1029/92GL0147410.1029/92GL01474
[40] Kirchner I., Stenchikov G. L., Graf H.-F., Robock A., Antuña J. C. Climate model simulation of winter warming and summer cooling following the 1991 Mount Pinatubo volcanic eruption. Journal of Geophysical Research 1999:104(D16):19039−19055. doi:10.1029/1999JD9002110.1029/1999JD90021
[42] Keith D. W. Photophoretic levitation of engineered aerosols for geoengineering. Proceedings of the National Academy of Sciences 2010:107(38):16428−16431. doi:10.1073/pnas.100951910710.1073/pnas.1009519107294471420823254
[43] Aquila V., Garfinkel C. I., Newman P. A., Oman L. D., Waugh D. W. Modifications of the quasi-biennial oscillation by a geoengineering perturbation of the stratospheric aerosol layer. Geophysical Research Letters 2014:41(5):1738−1744. doi:10.1002/2013GL0588110.1002/2013GL05881
[44] Pitari G., et al. Stratospheric ozone response to sulfate geoengineering: Results from the Geoengineering Model Intercomparison Project (GeoMIP). Journal of Geophysical Research: Atmospheres 2014:119(5):2629−2653. doi:10.1002/2013JD02056610.1002/2013JD020566
[45] Kravitz B., Robock A., Boucher O., Schmidt H., Taylor K. E., Stenchikov G., Schulz M. The geoengineering model intercomparison project (GeoMIP). Atmospheric Science Letters 2011:12(2):162−167. doi:10.1002/asl.31610.1002/asl.316
[46] MacMartin D. G., et al. The climate response to stratospheric aerosol geoengineering can be tailored using multiple injection locations. Journal of Geophysical Research: Atmospheres 2017:122(23):12−574. doi:10.1002/2017JD0268710.1002/2017JD02687
[47] Tilmes S., et al. Sensitivity of aerosol distribution and climate response to stratospheric SO2 injection locations. Journal of Geophysical Research: Atmospheres 2017:122(23):12591−12615. doi:10.1002/2017JD02688810.1002/2017JD026888
[48] Laakso A., Korhonen H., Romakkaniemi S., Kokkola H. Radiative and climate effects of stratospheric sulfur geoengineering using seasonally varying injection areas. Atmospheric Chemistry and Physics 2017:17(11):6957. doi:0.5194/acp−2017−10710.5194/acp-17-6957-2017
[49] Rasch P., Crutzen J., Coleman B. Exploring the geoengineering of climate using stratospheric sulfate aerosols: The role of particle size. Geophysical Research Letters 2008:35(2). doi:10.1029/2007GL03217910.1029/2007GL032179
[51] Niemeier U., Timmreck C., Graf H.-F., Kinne S., Rast S., Self S. Initial fate of fine ash and sulfur from large volcanic eruptions. Atmospheric Chemistry and Physics 2009:9(22):9043–9057. doi:10.5194/acp−9−9043−200910.5194/acp990432009
[52] Pierce J. R., et al. Efficient formation of stratospheric aerosol for climate engineering by emission of condensible vapor from aircraft. Geophysical Research Letters 2010:37(18). doi:10.1029/2010GL04397510.1029/2010GL043975
[53] Vattioni S., Weisenstein D., Keith D., Feinberg A., Peter T., Stenke A. Exploring accumulation-mode-H2SO4 versus SO2 stratospheric sulfate geoengineering in a sectional aerosol-chemistry-climate model. Atmospheric Chemistry and Physics Discussions 2018:1−30. doi:10.5194/acp−2018−107010.5194/acp20181070
[54] English J. M., Toon O. B., Mills M. J. Microphysical simulations of sulfur burdens from stratospheric sulfur geoengineering. Atmospheric Chemistry and Physics 2012:12(10):4775−4793. doi:10.5194/acp−12−4775−201210.5194/acp-12-4775-2012
[55] Visioni D., Pitari G., Tuccella P., Curci G. Sulfur deposition changes under sulfate geoengineering conditions: Quasi-biennial oscillation effects on the transport and lifetime of stratospheric aerosols. Atmospheric Chemistry and Physics 2018:18(4):2787−2808. doi:10.5194/acp−18−2787−201810.5194/acp1827872018
[56] Bernstein D. N., Neelin J. D., Li Q. B., Chen D. Could aerosol emissions be used for regional heat wave mitigation? Atmospheric Chemistry and Physics 2013:13(13):6373−6390.10.5194/acp-13-6373-2013
[58] Skamarock W. C., et al. A Description of the Advanced Research WRF Version 3. NCAR Technical Note NCAR/TN−475+STR. Boulder: NSCAR, 2008. doi:10.5065/D68S4MVH10.5065/D68S4MVH
[60] Zanobetti A., O’Neill M. S., Gronlund C. J., Schwartz J. D. Susceptibility to mortality in weather extremes: effect modification by personal and small-area characteristics. Epidemiology 2013:24(6):809−19. doi:10.1097/01.ede.0000434432.06765.9110.1097/01.ede.0000434432.06765.91430420724045717
[61] Ciais P., et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 2005:437(7058):529−33. doi:10.1038/nature0397210.1038/03972
[62] Toomey M., Roberts D. A., Still C., Goulden M. L., McFadden J. P. Remotely sensed heat anomalies linked with Amazonian forest biomass declines. Geophysical Research Letters 2011:38(19). doi:10.1029/2011GL04904110.1029/2011GL049041
[63] Smoyer-Tomic K. E., Kuhn R., Hudson A. Heat Wave Hazards: An Overview of Heat Wave Impacts in Canada. Natural Hazards 2003:28(2−3):465−486. doi:10.1023/A:102294652815710.1023/A:1022946528157
[64] Roper R. E. Book Review of Heat Wave: A Social Autopsy of Disaster in Chicago by E. Klinenberg. The American Journal of Sociology 2003:108(5):1114−1115.10.1086/379563
[65] Jolly W. M., Dobbertin M., Zimmermann N. E., Reichstein M. Divergent vegetation growth responses to the 2003 heat wave in the Swiss Alps. Geophysical Research Letters 2005:32(18). doi:10.1029/2005GL02325210.1029/2005GL023252
[66] Theoharatos G., Pantavou K., Mavrakis A., Spanou A., Katavoutas G., Efstathiou P., Mpekas P., Asimakopoulos D. Heat waves observed in 2007 in Athens, Greece: synoptic conditions, bioclimatological assessment, air quality levels and health effects. Environmental research 2010:110(2):152−61. doi:10.1016/j.envres.2009.12.00210.1016/j.envres.2009.12.00220060520
[67] Rusticucci M., Kyselý J., Almeira G., Lhotka O. Long-term variability of heat waves in Argentina and recurrence probability of the severe 2008 heat wave in Buenos Aires. Theoretical and Applied Climatology 2015:124(3−4):679−689.10.1007/s00704-015-1445-7
[68] Cerne S. B., Vera C. S., Liebmann B. The Nature of a Heat Wave in Eastern Argentina Occurring during SALLJEX. Monthly Weather Review 2007:135(3):1165−1174. doi:10.1175/MWR3306.110.1175/MWR3306.1
[69] Norte F. A., Seluchi M. E., Gomes J. L., Simonelli S. C. Analysis of an extreme heat wave over the subtropical region of South America. Revista Brasileira de Meteorologia 2007:22(3):373–386. doi.org/10.1590/S0102-7786200700030001010.1590/S0102-77862007000300010
[71] Flores G.E., Gómez R.S. Taxonomía y biogeografía de cuatro especies de Psectrascelis (Coleoptera: Tenebrionidae) de la Precordillera y Cordillera de los Andes en Mendoza, Argentina. Revista de la Sociedad Entomológica Argentina. 2005:64(3):93−106.
[72] U.S. Department of Commerce. National Oceanic and Atmospheric Administration, Earth System Research Laboratory, Physical Sciences Division. Daily Climate Composites. Available: https://www.esrl.noaa.gov/psd/data/composites/day/
[73] National Center for Atmospheric Research. Historical Unidata Internet Data Distribution Gridded Model Data, 2003. doi:10.5065/549X-KE8910.5065/549X-KE89
[74] Almanza V. H., Molina L. T., Li G., Fast J., Sosa G. Impact of external industrial sources on the regional and local SO2 and O3 levels of the Mexico megacity. Atmospheric Chemistry and Physics 2014:14(16):8483–8499. doi:10.5194/acp−14−8483−201410.5194/acp1484832014
[75] Chapman E. G., et al. Coupling aerosol-cloud-radiative processes in the WRF-Chem model: Investigating the radiative impact of elevated point sources. Atmospheric Chemistry and Physics 2009:9(3):945–964. doi:10.5194/acp−9−945−200910.5194/acp99452009
[76] Misenis C., Zhang Y. An examination of sensitivity of WRF/Chem predictions to physical parameterizations, horizontal grid spacing, and nesting options. Atmospheric Research 2010:97(3):315–334. doi:10.1016/j.atmosres.2010.04.00510.1016/j.atmosres.2010.04.005
[77] Mulena G. C., Allende D. G., Puliafito S. E., Lakkis S. G., Cremades P. G., Ulke A. G. Examining the influence of meteorological simulations forced by different initial and boundary conditions in volcanic ash dispersion modelling. Atmospheric Research 2016:176–177:29–42. doi:10.1016/j.atmosres.2016.02.00910.1016/j.atmosres.2016.02.009
[78] Carvalho D., Rocha A., Gómez-Gesteira M. Ocean surface wind simulation forced by different reanalyses: Comparison with observed data along the Iberian Peninsula coast. Ocean Modelling 2012:56:31–42. doi:10.1016/j.ocemod.2012.08.00210.1016/j.ocemod.2012.08.002
[79] Borge R., Alexandrov V., Josedelvas J., Lumbreras J., Rodriguez E. A comprehensive sensitivity analysis of the WRF model for air quality applications over the Iberian Peninsula. Atmospheric Environment 2008:42(37):8560–8574. doi:10.1016/j.atmosenv.2008.08.03210.1016/j.atmosenv.2008.08.032
[80] Stockwell W. R., Middleton P., Chang J. S., Tang X. The second generation regional acid deposition model chemical mechanism for regional air quality modeling. Journal of Geophysical Research 1990:95(D10):16343. doi:10.1029/JD095iD10p1634310.1029/JD095iD10p16343
[81] Ackermann I. J., Hass H., Memmesheimer M., Ebel A., Binkowski F. S., Shankar U. Modal aerosol dynamics model for Europe: development and first applications. Atmospheric Environment 1998:32(17):2981–2999. doi.org/10.1016/S1352-2310(98)00006-510.1016/S1352-2310(98)00006-5
[82] Max Planck Institute for Meteorology. REanalysis of the TROpospheric chemical composition over the past 40 years (RETRO). A long-term global modeling study of tropospheric chemistry funded under the 5th EU framework programme. Report no. 48/2007 of the Max Planck Institute for Meteorology, 2007.
[83] Olivier J. G. J., et al. Applications of Emission Database for Global Atmospheric Research (EDGAR). Including a description of EDGAR 3.2. Reference database with trend data for 1970−1995. INIS 2002:33(45).
[85] Ginoux P., Chin M., Tegen I., Prospero J. M., Holben B., Dubovik O., Lin S.-J. Sources and distributions of dust aerosols simulated with the GOCART model. Journal of Geophysical Research 2001:106(D17):20255. doi:10.1029/2000JD00005310.1029/2000JD000053
[86] Guenther A., Karl T., Harley P., Wiedinmyer C., Palmer P. I., Geron C. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmospheric Chemistry and Physics 2006:6(11):3181–3210. doi.org/10.5194/acp-6-3181-200610.5194/acp-6-3181-2006
[88] Kravitz B., Robock A., Oman L., Stenchikov G., Marquardt A. B. Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols. Journal of Geophysical Research 2009:114(D14):D14109. doi:10.1029/2009JD01191810.1029/2009JD011918
[89] Eastham S. D., Weisenstein D. K., Keith D. W., Barrett S. R. H. Quantifying the impact of sulfate geoengineering on mortality from air quality and UV-B exposure. Atmospheric Environment 2018:187:424–434. doi:10.1016/J.ATMOSENV.2018.05.04710.1016/J.ATMOSENV.2018.05.047
[90] Visioni D., Pitari G., Aquila V. Sulfate geoengineering: a review of the factors controlling the needed injection of sulfur dioxide. Atmospheric Chemistry and Physics 2017:17(6):3879–3889. doi:10.5194/acp-17-3879-201710.5194/acp-17-3879-2017
[91] Zaveri R. A., Easter R. C., Fast J. D., Peters L. K. Model for Simulating Aerosol Interactions and Chemistry (MOSAIC). Journal of Geophysical Research 2008:113(D13):D13204. doi:10.1029/2007JD00878210.1029/2007JD008782
[92] Zhang Y., Seigneur C., Seinfeld J. H., Jacobson M. Z., Binkowski F. S. Simulation of Aerosol Dynamics: A Comparative Review of Algorithms Used in Air Quality Models. Aerosol Science and Technology 1999:31(6):487–514. doi:10.1080/02786829930403910.1080/027868299304039
[93] Zhang Y., He J., Zhu S., Gantt B. Sensitivity of simulated chemical concentrations and aerosol-meteorology interactions to aerosol treatments and biogenic organic emissions in WRF/Chem. Journal of Geophysical Research: Atmospheres 2016:121(10):6014–6048. doi:10.1002/2016JD02488210.1002/2016JD024882
[94] Georgiou G. K., Christoudias T., Proestos Y., Kushta J., Hadjinicolaou P., Lelieveld J. Air quality modelling in the summer over the eastern Mediterranean using WRF-Chem: chemistry and aerosol mechanism intercomparison. Atmospheric Chemistry and Physics 2018:18(3):1555–1571. doi.org/10.5194/acp-18-1555-201810.5194/acp-18-1555-2018