Have a personal or library account? Click to login
The Impact of Parallel Energy Consumption on the District Heating Networks Cover

The Impact of Parallel Energy Consumption on the District Heating Networks

Open Access
|Mar 2019

References

  1. [1] Latosov E., Volkova A., Siirde A., Kurnitski J., Thalfeldt M. Methodological approach to determining the effect of parallel energy consumption on district heating system. Environmental and Climate Technologies 2017:19:5–14. doi:10.1515/rtuect-2017-000110.1515/rtuect-2017-0001
  2. [2] Blumberga A., Cilinskis E., Gravelsins A., Ferrao P., Le O. Analysis of regulatory instruments promoting building energy efficiency. Energy Procedia 2018:147:258–267. doi:10.1016/j.egypro.2018.07.09010.1016/j.egypro.2018.07.090
  3. [3] Augustins E., Jaunzems Dz., Rochas C., Kamenders A. Managing energy efficiency of buildings: analysis of ESCO experience in Latvia. Energy Procedia 2018:147:614–623. doi:10.1016/j.egypro.2018.07.07910.1016/j.egypro.2018.07.079
  4. [4] Zogla G., Blumberga A. Energy Consumption and Indoor Air Quality of Different Ventilation Possibilities in a New Apartment Building. Environmental and Climate Technologies 2010:4:130–135. doi:10.2478/v10145-010-0028-110.2478/v10145-010-0028-1
  5. [5] Andric I., Pina A., Ferrao P., Fournier J., Lacarriere B., Le Corre O. Assessing the feasibility of using the heat demand-outdoor temperature function for a long-term district heat demand forecast. Energy Procedia 2017:132:963–968. doi:10.1016/j.egypro.2017.05.09310.1016/j.egypro.2017.05.093
  6. [6] Ilomets S., Kuusk K., Paap L., Arumagi E., Kalamees T. Impact of Linear Thermal Bridges on Thermal Transmittance of Renovated Apartment Buildings. Journal of Civil Engineering and Management 2017:23(1):96–104. doi:10.3846/13923730.2014.97625910.3846/13923730.2014.976259
  7. [7] Zagorskas J., Kazimieras E., Turskis Z., Burinskien M., Blumberga A., Blumberga D. Thermal insulation alternatives of historic brick buildings in Baltic Sea Region. Energy and Buildings 2014:78:35–42. doi:10.1016/j.enbuild.2014.04.01010.1016/j.enbuild.2014.04.010
  8. [8] Delmastro C., Martinsson F., Dulac J., Corgnati S. P. Sustainable urban heat strategies: Perspectives from integrated district energy choices and energy conservation in buildings. Case studies in Torino and Stockholm. Energy 2017:138:1209–1220. doi:10.1016/j.energy.2017.08.01910.1016/j.energy.2017.08.019
  9. [9] Aberg M., Henning D. Optimisation of a Swedish district heating system with reduced heat demand due to energy efficiency measures in residential buildings. Energy Policy 2011:39(12):7839–7852. doi:10.1016/j.enpol.2011.09.03110.1016/j.enpol.2011.09.031
  10. [10] Zagorskas J., Paliulis G. M., Burinskiene M., Venckauskaite J., Rasmussen T. V. Energetic refurbishment of historic brick buildings: Problems and opportunities. Environmental and Climate Technologies 2013:12(1):20–27. doi:10.2478/rtuect-2013-001210.2478/rtuect-2013-0012
  11. [11] Kuusk K., Kalamees T. Estonian grant scheme for renovating apartment buildings. Energy Procedia 2016:96:628–637. doi:10.1016/j.egypro.2016.09.11310.1016/j.egypro.2016.09.113
  12. [12] Leoncini L. The Primary Energy Factors play a central role in European 2020 targets achievement. Policies for Sustainable Construction 2016:113–120.
  13. [13] EU Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings (recast). Official Journal of the European Union 2010:13–35.
  14. [14] Pakere I., Romagnoli F., Blumberga D. Introduction of small-scale 4th generation district heating system. Methodology approach. Energy Procedia 2018:149:549–554. doi:10.1016/j.egypro.2018.08.21910.1016/j.egypro.2018.08.219
  15. [15] Gustavsson L., Dodoo A., Truong N. L., Danielski I. Primary energy implications of end-use energy efficiency measures in district heated buildings. Energy and Buildings 2011:43(1):38–48. doi:10.1016/j.enbuild.2010.07.02910.1016/j.enbuild.2010.07.029
  16. [16] Le Truong N., Dodoo A., Gustavsson L. Effects of heat and electricity saving measures in district-heated multistory residential buildings. Applied Energy 2014:118(1):57–67. doi:10.1016/j.apenergy.2013.12.00910.1016/j.apenergy.2013.12.009
  17. [17] Ziemele J., Cilinskis E., Zogla G., Gravelsins A. Impact of economical mechanisms on CO2 emissions from non ETS district heating in Latvia using system dynamic approach. International Journal of Energy and Environmental Engineering 2018:9(2):111–121. doi:10.1007/s40095-017-0241-910.1007/s40095-017-0241-9
  18. 9[18] Volkova A., Masatin V., Siirde A. Methodology for evaluating the transition process dynamics towards 4th generation district heating networks. Energy 2018:150(1):253–261. doi:10.1016/j.energy.2018.02.12310.1016/j.energy.2018.02.123
  19. [19] Gustafsson M., Gustafsson M. S., Myhren J. A., Bales C., Holmberg S. Techno-economic analysis of energy renovation measures for a district heated multi-family house. Applied Energy 2016:177(1):108–116. doi:10.1016/j.apenergy.2016.05.10410.1016/j.apenergy.2016.05.104
  20. [20] Thalfeldt M., Kurnitski J., Latosov E. Exhaust air heat pump connection schemes and balanced heat recovery ventilation effect on district heat energy use and return temperature. Applied Thermal Engineering 2018:128(5):402–414. doi:10.1016/j.applthermaleng.2017.09.03310.1016/j.applthermaleng.2017.09.033
  21. [21] RT I 24.03.2015 2, Korterelamute rekonstrueerimise toetuse andmise tingimused, Estonian Ministry of Economy and Communications Ordinance, 2015.
  22. [22] Thalfeldt M., Kurnitski J., Latosov E. The Effect of Exhaust Air Heat Pump on District Heat Energy Use and Return Temperature. CLIMA 2016 – proceedings of the 12th REHVA World Congress: Volume 3. Aalborg: Aalborg University, 2016.
  23. [23] Software IDA-ICE. IDA Indoor Climate and Energy 4.7.
  24. [24] Energiatohususe miinimumnouded [In Estonian]. Estonian Ministry of Economy and Communications Ordinance No. 55, 03.06.2015.
  25. [25] Estonian Competition Authority. Soojuse piirhinna kooskolastamise pohimotted [In Estonian]. Tallinn, 2013.
  26. [26] Valisohku valjutatava susinikdioksiidi heite arvutusliku maaramise meetodid [In Estonian]. Riigi Teataja, 2017.
  27. [27] Uiga J. CO2 emissions resulting from Final Energy Consumption – A Case Study of Tartu City. Estonian University of Life Sciences, Tartu, 2014.
DOI: https://doi.org/10.2478/rtuect-2019-0001 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 1 - 13
Published on: Mar 26, 2019
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Eduard Latosov, Anna Volkova, Andres Siirde, Martin Thalfeldt, Jarek Kurnitski, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.