Have a personal or library account? Click to login
Evaluation of Predictive Capabilities of Regression Models and Artificial Neural Networks for Density and Viscosity Measurements of Different Biodiesel-Diesel-Vegetable Oil Ternary Blends
[1] Cakmak A., Bilgin A. Exergy and energy analysis with economic aspects of a diesel engine running on biodiesel-diesel fuel blends. International Journal of Exergy 2017:24(2-4):151-72. doi:10.1504/ijex.2017.10007074
[2] Pehlivan E. F., Altın I. Investigation of cylinder pressure variation using stochastic reactor model in a biodiesel pilot injection diesel engine operated with natural gas. Journal of ETA Maritime Science 2017:5(1):5-17. doi:10.5505/jems.2017.88942
[3] Pratas M. J., Freitas S., Oliveira M. B., Monteiro S. C., Lima A. S., Coutinho J. A. P. Densities and viscosities of fatty acid methyl and ethyl esters. Journal of Chemical and Engineering Data 2010:55(9):3983-3990. doi:10.1021/je100042c
[4] Gulum M., Bilgin A. Regression models for predicting some important fuel properties of corn and hazelnut oil biodiesel-diesel fuel blends. Exergetic, energetic and environmental dimensions. Amsterdam, 2018.10.1016/B978-0-12-813734-5.00047-0
[5] Jain S., Sharma M. P. Prospects of biodiesel from Jatropha in India: A review. Renewable and Sustainable Energy Reviews 2010:14(2):763-71. doi:10.1016/j.rser.2009.10.005
[6] Nabi N., Rahman M., Akhter S. Biodiesel from cotton seed oil and its effect on engine performance and exhaust emissions. Applied Thermal Engineering 2009:29(11-12):2265-70. doi:10.1016/j.applthermaleng.2008.11.009
[7] Machacon H. T. C., Shiga S., Karasawa T., Nakamura H. Performance and emission characteristics of a diesel engine fueled with coconut oil-diesel fuel blend. Biomass and Bioenergy 2001:20(1):63-9. doi:10.1016/S0961-9534(00)00059-3
[8] Sahoo P. K., Das L. M. Combustion analysis of Jatropha, Karanja and Polanga based biodiesel as fuel in a diesel engine. Fuel 2009:88(6):994-9. doi:10.1016/j.fuel.2008.11.012
[9] Ghobadian B., Rahimi H., Nikbakht A. M., Najafi G., Yusaf T. F. Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network. Renewable Energy 2009:34(4):976-82. doi:10.1016/j.renene.2008.08.008
[10] Gulum M., Bilgin A. A research on reaction parameters about hazelnut oil methyl ester production. Exergetic, energetic and environmental dimensions. Amsterdam, 2017.10.1016/B978-0-12-813734-5.00050-0
[11] Freitas S. V. D., Pratas M. J., Ceriani R., Lima A. S., Coutinho J. A. P. Evaluation of predictive models for the viscosity of biodiesel. Energy & Fuels 2011:25:352-8. doi:10.1021/ef101299d
[12] Yusuf N. N. A. N., Kamarudin S. K., Yaakub Z. Overview on the current trends in biodiesel production. Energy Conversion and Management 2011:52(7):2741-51. doi:10.1016/j.enconman.2010.12.004
[13] Parente R. C., Nogueira C. A., Carmo F. R., Lima L. P., Fernandes F. A. N., Aguiar R. S. S., Sant’Ana H. B. Excess volumes and deviations of viscosities of binary blends of sunflower biodiesel+diesel and fish oil biodiesel+diesel at various temperatures. Journal of Chemical & Engineering Data 2011:56(7):3061-7. doi:10.1021/je200120t
[14] Meng X., Jia M., Wang T. Predicting biodiesel densities over a wide temperature range up to 523 K. Fuel 2013:111:216-22. doi:10.1016/j.fuel.2013.04.050
[15] Gulum M., Bilgin A. Density, flash point and heating value variations of corn oil biodiesel-diesel fuel blends. Fuel Processing Technology 2015:134:456-64. doi:10.1016/j.fuproc.2015.02.026
[16] Gaonkar N., Vaidya R. G. A simple model to predict the biodiesel blend density as simultaneous function of blend percent and temperature. Environmental Science and Pollution Research 2016:23(10):9260-4. doi:10.1007/s11356-015-4803-1
[17] Gulum M., Bilgin A. Two-term power models for estimating kinematic viscosities of different biodiesel-diesel fuel blends. Fuel Processing Technology 2016:149:121-30. doi:10.1016/j.fuproc.2016.04.013
[18] Ryu K. Effects of pilot injection timing on the combustion and emissions characteristics in a diesel engine using biodiesel-CNG dual fuel. Applied Energy 2013:111:721-30. doi:10.1016/j.apenergy.2013.05.046
[22] Bilgin A., Gulum M., Koyuncuoglu I., Nac E., Cakmak A. V. Determination of transesterification reaction parameters giving the lowest viscosity waste cooking oil biodiesel. Social and Behavioral Sciences Procedia 2015:195:2492-500. doi:10.1016/j.sbspro.2015.06.318
[23] Gulum M., Bilgin A. Measurements and empirical correlations in predicting biodiesel-diesel blends’ viscosity and density. Fuel 2017:199:567-77. doi:10.1016/j.fuel.2017.03.001
[24] Gulum M., Bilgin A. A comprehensive study on measurement and prediction of viscosity of biodiesel-diesel-alcohol ternary blends. Energy 2018:148:341-61. doi:10.1016/j.energy.2018.01.123
[25] Nogueira C. A., Carmo F. R., Santiago D. F., Nogueira V. M., Fernandes F. A. N., Aguiar R. S. S., Sant’Ana H. B. D. Viscosities and densities of ternary blends of diesel + soybean biodiesel + soybean oil. Journal of Chemical Engineering Data 2012:57:3233-41. doi:10.1021/je300838n
[26] Baroutian S., Aroua M. K., Raman A. A. A., Sulaiman N. M. N. Viscosities and densities of binary and ternary blends of palm oil+palm biodiesel+diesel fuel at different temperatures. Journal of Chemical Engineering Data 2010:55:504-7. doi:10.1021/je900299x
[29] Suykens J. A. K., Vandewalle J. P. L., De Moor B. L. R. Artificial neural networks for modelling and control of non-linear systems. First Edition. Springer-Science+Business Media, 2012. doi:10.1007/978-1-4757-2493-6
[30] Jeguirim S. E. G., Dhouib A. B., Sahnoun M. The use of fuzzy logic and neural networks models for sensory properties prediction from process and structure parameters of knitted fabrics. Journal of Intelligent Manufacturing 2011:22(6):873-84. doi:10.1007/s10845-009-0362-y
[31] Psaltis D., Sideris A., Yamamura A. A. A multilayered neural network controller. IEEE Control Systems Magazine 1988:8(2):17-21. doi:10.1109/37.1868
[32] Karsoliya S. Approximating number of hidden layer neurons in multiple hidden layer BPNN architecture. International Journal of Engineering Trends and Technology 2012:3(6):714-7.
[33] Gupta A., Sharma S. K., Toor A. P. An empirical correlation in predicting the viscosity of refined vegetable oils. Indian Journal of Chemical Technology 2007:14:642-5.
[34] Eryilmaz T., Arslan M., Yesilyurt M. K., Taner A. Comparison of empirical equations and artificial neural network results in terms of kinematic viscosity prediction of fuels based on hazelnut oil methyl ester. Environmental Progress & Sustainable Energy 2016:35(6):1827-41. doi:10.1002/ep.12410
[35] Gulum M., Onay F., Bilgin A. Evaluation of Predictive Capabilities of Regression Models and Artificial Neural Networks for Density and Viscosity Measurements of Different Biodiesel-Diesel-Vegetable Oil Ternary Blends. Annex Figures and Tables. Available: https://zenodo.org/record/2544030#.XEVyr82xWUl
[36] Feitosa F. X., Rodrigues M. D. L., Veloso C. B., Cavalcante C. L., Albuquerque M. C. G., Sant’Ana H. B. D. Viscosities and densities of binary mixtures of coconut+colza and coconut+soybean biodiesel at various temperatures. Journal of Chemical Engineering Data 2010:55:3909-14. doi:10.1021/je901060j