Have a personal or library account? Click to login
Production of Fish Feed and Fish Oil from Waste Biomass Using Microorganisms: Overview of Methods Analyzing Resource Availability Cover

Production of Fish Feed and Fish Oil from Waste Biomass Using Microorganisms: Overview of Methods Analyzing Resource Availability

Open Access
|Dec 2018

References

  1. [1] FAO. The State of World Fisheries and Aquaculture 2016. Contributing to food security and nutrition for all. Rome, 2016.
  2. [2] FAO. FishStatJ: a tool for fishery statistics analysis, Release 3.0.0. Universal software for fishery statistical time series. Global capture and aquaculture production: Quantities 1950-2014; Aquaculture values 1984-2014. Rome, 2016.
  3. [3] The Marine Ingredients Organisation. Is aquaculture growth putting pressure on feed fish stocks? And is the growth of aquaculture being restricted by finite supplies of fishmeal and fish? IFFO, 2013.
  4. [4] Tocher D. R. Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture 2015:449:94-107. doi:10.1016/j.aquaculture.2015.01.010
  5. [5] Tacon A. G. J., Metian M. Feed Matters: Satisfying the Feed Demand of Aquaculture. Reviews in Fisheries Science & Aquaculture 2015:23(1):1-10. doi:10.1080/23308249.2014.987209
  6. [6] Guy A. Overfishing and El Niño Push the World’s Biggest Single-Species Fishery to a Critical Point. Oceana; 2016.
  7. [7] Iwamoto T., Eschmeyer W., Alvarado J. Engraulis ringens. The IUCN Red List of Threatened Species 2010. doi:10.2305/IUCN.UK.2010-3.RLTS.T183775A8174811.en.
  8. [8] Shepherd J., Bachis E. Changing supply and demand for fish oil. Aquaculture Economics & Management 2014:18:395-416. doi:10.1080/13657305.2014.959212
  9. [9] Finco A. M. O., Mamani L. D. G., Carvalho J. C., Pereira G. V. M., Soccol V. T., Soccol C. R. Technological trends and market perspectives for production of microbial oils rich in omega-3. Critical Reviews in Biotechnology 2017:37(5):656-671. doi:10.1080/07388551.2016.1213221
  10. [10] Grand View Research. Global fish oil market analysis and segment forecasts to 2020; 2014.
  11. [11] Ivanovs K. Pike Esox Lucius Distribution and Feeding Comparisons in Natural and Historically Channelized River Sections. Environmental and Climate Technologies 2016:18:33-41. doi:10.1515/rtuect-2016-0011
  12. [12] Dunbar B. S., Bosire R. V., Deckelbaum R. J. Omega 3 and omega 6 fatty acids in human and animal health: an African perspective. Molecular and Cellular Endocrinology 2014:398:69-77. doi:10.1016/j.mce.2014.10.009
  13. [13] Patterson E., Wall R., Fitzgerald G. F., Ross R. P., Stanton C. Health implications of high dietary omega-6 polyunsaturated fatty acids. J Nutr Metab. 2012:2012:1-17.10.1155/2012/539426333525722570770
  14. [14] FAO. Fish oil - January 2013.
  15. [15] Martins D. A., Custodio L., Barreira L., Pereira H., Ben-Hamadou R., Varela J., Abu-Salah K. M. Alternative sources of n-3 long-chain polyunsaturated fatty acids in marine microalgae. Mar Drugs 2013:11:2259-2281. doi:10.3390/md11072259
  16. [16] Bolonina A., Comoglio C., Calles O., Kunickis M. Strategies for mitigating the impact of hydropower plants on the stocks of diadromous species in the Daugava River. Energy Procedia 2016:95:81-88. doi:10.1016/j.egypro.2016.09.027
  17. [17] Kitessa S. M., Abeywardena M., Wijesundera C., Nichols P. D. DHA-containing oilseed: A timely solution for the sustainability issues surrounding fish oil sources of the health-benefitting long-chain omega-3 oils. Nutrients 2014:6:2035-2058. doi:10.3390/nu6052035
  18. [18] Bibus D. M. Long-chain omega-3 from low-trophiclevel fish provides value to farmed seafood. Lipid Technol. 2015:27:55-58. doi:10.1002/lite.201500006
  19. [19] Adarme-Vega T. C., Thomas-Hall S. R., Schenk P. M. Towards sustainable sources for omega-3 fatty acids production. Curr Opin Biotechnol. 2014:26:14-18. doi:10.1016/j.copbio.2013.08.003
  20. [20] Caruso G. Use of Plant Products as Candidate Fish Meal Substitutes: An Emerging Issue in Aquaculture Productions. Fish Aquac J. 2015:6:e123. doi:10.4172/2150-3508.1000e123
  21. [21] Francis G., Makkar H. P. S., Becker K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 2001:199(3-4):197-227. doi:10.1016/S0044-8486(01)00526-9
  22. [22] Spinelli J. FAO. Fish Feed Technology. Chapter 12. Unconventional Feed Ingredients for Fish Feed. Washington: National Marine Fisheries Services, 1980.
  23. [23] Alriksson B., Hornberg A., Gudnason A. E., Knobloch S., Arnason J., Johannsson R. Fish feed from wood. Cellulose Chemestry and Technology 2014:48(9-10):843-848.
  24. [24] Ferreira J. A., Lennartsson P. R., Niklasson C., Lundin M., Edebo L., Taherzadeh M. J. Production of Rhizopussp. from SSL. BioResources 2012:7(1):173-188.10.15376/biores.7.1.173-188
  25. [25] Spalvins S., Ivanovs K., Blumberga D. Single cell protein production from waste biomass: review of various agricultural by-products. Agronomy Research 2018:16(S2):1493-1508. doi:10.15159/AR.18.129
  26. [26] Spalvins S., Zihare L., Blumberga D. Single cell protein production from waste biomass: comparison of various industrial by-products. Energy Procedia 2018:147:409-418. doi:10.1016/j.egypro.2018.07.111
  27. [27] Ruiz-Lopez N., Usher S., Sayanova O. V., Napier J. A., Haslam R. P. Modifying the lipid content and composition of plant seeds: engineering the production of LC-PUFA. Appl Microbiol Biotechnol. 2015:99:143-154. doi:10.1007/s00253-014-6217-2
  28. [28] Monroig O., Navarro J. C., Tocher D. R. Long-chain poly-unsaturated fatty acids in fish: recent advances on desaturases and elongases involved in their biosynthesis. Paper presented at Av. en Nutr. Acuıcola XI - Memorias del Decimo Prim. Simp. Int. Nutr. Acuıcola, 2011.
  29. [29] Donot F., Fontana A., Baccou J. C., Strub C., Schorr-Galindo S. Single cell oils (SCOs) from oleaginous yeasts and moulds: production and genetics. Biomass Bioenergy 2014:68:135-150. doi:10.1016/j.biombioe.2014.06.016
  30. [30] Napier J. A., Usher S., Haslam R. P., Ruiz-Lopez N., Sayanova O. Transgenic plants as a sustainable, terrestrial source of fish oils. Eur J Lipid Sci Technol. 2015:117:1317-1324. doi:10.1002/ejlt.201400452
  31. [31] Hoffmann M., Wagner M., Abbadi A., Fulda M., Feussner I. Metabolic engineering of omega-3 very long chain polyunsaturated fatty acid production by an exclusively. J Biol Chem. 2008; 283:22352-22362. doi:10.1074/jbc.M802377200
  32. [32] Qi B., Fraser T., Mugford S., Dobson G., Sayanova O., Butler J., Napier J. A., Stobart A. K., Lazarus C. M. Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat Biotechnol. 2004:22:739-745. doi:10.1038/nbt972
  33. [33] Petrie J. R., Shrestha P., Belide S., Kennedy Y., Lester G., Liu Q., Divi U. K., Mulder R. J., Mansour M. P., Nichols P. D., Singh S. P. Metabolic Engineering Camelina sativa with Fish Oil-Like Levels of DHA. PLoS One 2014:9:8. doi:10.1371/journal.pone.0085061
  34. [34] Funk C., Rainie L. Public and Scientists' Views on Science and Society. Pew Research Center, 2015.
  35. [35] Marris C. Public views on GMOs: deconstructing the myths. EMBO Reports 2001:2:545-548. doi:10.1093/embo-reports/kve142
  36. [36] Commission of European Communities. Public Perceptions of Agricultural Biotechnologies in Europe. Final Report of the PABE research project, 2001.
  37. [37] Scott S. E., Inbar Y., Rozin P. Evidence for Absolute Moral Opposition to Genetically Modified Food in the United States. Perspectives on Psychological Science 2016:11(3):315-324. doi:10.1177/1745691615621275
  38. [38] Library of Congress. Restrictions on Genetically Modified Organisms, 2015.
  39. [39] Bashshur R. FDA and Regulation of GMOs. American Bar Association; 2013.
  40. [40] Sifferlin A. Over Half of E.U. Countries Are Opting Out of GMOs. Time 2015.
  41. [41] Lynch D., Vogel D. The Regulation of GMOs in Europe and the United States: A Case-Study of Contemporary European Regulatory Politics. Council on Foreign Relations, 2001.
  42. [42] Innis S. M. Dietary omega 3 fatty acids and the developing brain. Brain Res. 2008:1237:35-43. doi:10.1016/j.brainres.2008.08.078
  43. [43] Sinclair A. J., Jayasooriya A. Nutritional aspects of single cell oils: applications of arachidonic acid and docosahexaenoic acid oils. Single cell oils. Champaign (IL): Elsevier, 2010. doi:10.1016/B978-1-893997-73-8.50020-7
  44. [44] Collins C. T., Makrides M., Gibson R. A., McPhee A. J., Davis P. G., Doyle L. W., Simmer K., Colditz P. B., Morris S., Sullivan T. R., Ryan P. Pre- and post-term growth in pre-term infants supplemented with higher-dose DHA: a randomised controlled trial. Br J Nutr. 2011:105:1635-1643. doi:10.1017/S000711451000509X
  45. [45] Ratledge C. Microbial oils: an introductory overview of current status and future prospects. OCL 2013:20:D602. doi:10.1051/ocl/2013029
  46. [46] Dewapriya P., Kim S. K. Marine microorganisms: an emerging avenue in modern nutraceuticals and functional foods. Food Res Int. 2014:56:115-125. doi:10.1016/j.foodres.2013.12.022
  47. [47] Meng X., Yang J., Xu X., Zhang L., Nie Q., Xian M. Biodiesel production from oleaginous microorganisms. Renew Energy 2009:34:1-5. doi:10.1016/j.renene.2008.04.014
  48. [48] Ratledge C., Cohen Z. Microbial and algal oils: do they have a future for biodiesel or as commodity oils? Lipid Technol. 2008:20:155-160. doi:10.1002/lite.200800044
  49. [49] Ward O. P., Singh A. Omega-3/6 fatty acids: alternative sources of production. Process Biochem. 2005:40:3627-3652. doi:10.1016/j.procbio.2005.02.020
  50. [50] Garay L. A., Boundy-Mills K. L., German J. B. Accumulation of high-value lipids in single-cell microorganisms: a mechanistic approach and future perspectives. J Agric Food Chem. 2014:62:2709-2727. doi:10.1021/jf4042134
  51. [51] Huang C., Chen X., Xiong L., Chen X., Ma L., Chen Y. Single cell oil production from low-cost substrates: the possibility and potential of its industrialization. Biotechnol Adv. 2013:31:129-139. doi:10.1016/j.biotechadv.2012.08.010
  52. [52] Thevenieau F., Nicaud J. M. Microorganisms as sources of oils. Oilseeds Fats Crop Lipids 2013:20:D603. doi:10.1051/ocl/2013034
  53. [53] Christophe G., Kumar V., Nouaille R., Gaudet G., Fontanille P., Pandey A., Soccol C. R., Larroche C. Recent developments in microbial oils production: a possible alternative to vegetable oils for biodiesel without competition with human food? Brazil Arch Biol Technol. 2012:55:29-46. doi:10.1590/S1516-89132012000100004
  54. [54] Liu J., Sun Z., Chen F. Heterotrophic production of algal oils. Biofuels from algae. Amsterdam: Elsevier, 2014. doi:10.1016/B978-0-444-59558-4.00006-1
  55. [55] Barisa A., Dzene I., Rosa M., Dobraja K. Waste-to-biomethane Concept Application: A Case Study of Valmiera City in Latvia. Environmental and Climate Technologies 2015:15:48-58. doi:10.1515/rtuect-2015-0005
  56. [56] Elegbede I., Guerrero C. Algae biofuel in the Nigerian energy context. Environmental and Climate Technologies 2016:17:44-60. doi:10.1515/rtuect-2016-0005
  57. [57] FAO. FAOSTAT Land Use module, 2016. Available from: http://www.fao.org/faostat/en/#data/RL/visualize
  58. [58] The Helgi Library. Arable Land Area, 2014. Available from: http://www.helgilibrary.com/indicators/arable-land-area
  59. [59] United Nations. Population Division. World Population Prospects, the 2015 Revision. Department of Economic and Social Affairs, 2015.
  60. [60] Liang M. H., Jiang J. G. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog Lipid Res. 2013:52:395-408. doi:10.1016/j.plipres.2013.05.002
  61. [61] Tatsiopoulos I. P., Tolis A. J. Economic aspects of the cotton-stalk biomass logistics and comparison of supply chain methods. Biomass and Bioenergy 2003:24(3):199-214. doi:10.1016/S0961-9534(02)00115-0
  62. [62] Hansen A. C., Barnes A. J., Lyne P. W. L. Simulation modelling of sugarcane harvest-to-mill delivery systems. Transactions of the ASAE 2002:45(3):531-8. doi:10.13031/2013.8819
  63. [63] Nilsson D. Dynamic simulation of straw harvesting systems: influence of climatic, geographical factors on performance and costs. Journal of Agricultural Engineering Research 2000:76(1):27-36. doi:10.1006/jaer.1999.0456
  64. [64] Nilsson D., Hansson P. A. Influence of various machinery combinations, fuel proportions and storage capacities on costs for co handling of straw and reed canary grass to district heating plants. Biomass and Bioenergy 2001:20(4):247-60. doi:10.1016/S0961-9534(00)00077-5
  65. [65] Mantovani B., Gibson H. A. Simulation model for analysis of harvesting and transport costs for biomass based on geography, density and plant location. Energy in World Agriculture 1992:5:253-80.
  66. [66] Berruto R., Maier D. E. Analyzing the receiving operation of different grain types in a single-pit country elevator. Transactions of the ASAE 2001:44(3):631-8. doi:10.13031/2013.6090
  67. [67] Berruto R., Ess D., Maier D. E., Dooley F. Network simulation of crop harvesting and delivery from farm field to commercial elevator. Electronic proceedings of the international conference on crop harvesting and processing, 9-11 February 2003, Louisville, USA.
  68. [68] Humphrey D. G., Chu J. Optimization of a corn processing simulation model. Proceedings of the winter simulation conference, December 13-16, Arlington, USA. New York: ACM Press, 1992:1349-55. doi:10.1145/167293.167941
  69. [69] Benock G., Loewer O. J., Bridges Jr. T., Loewer D. H. Grain flow restrictions in harvesting-delivery drying systems. Transactions of the ASAE 1981:24(5):1151-61. doi:10.13031/2013.34412
  70. [70] Sokhansanj S., Kumar A., Turhollow A. F. Development and implementation of integrated biomass supply analysis and logistics model (IBSAL). Biomass & Bioenergy 2006:30:838-847. doi:10.1016/j.biombioe.2006.04.004
  71. [71] Ebadian M., Sowlati T., Sokhansanj S., Townley-Smith L., Stumborg M. Modeling and analysing storage systems in agricultural biomass supply chain for cellulosic ethanol production. Applied Energy 2013:102:840-849. doi:10.1016/j.apenergy.2012.08.049
  72. [72] Ebadian M., Sowlati T., Sokhansanj S., Stumborg M., Townley-Smith L. A new simulation model for multi-agricultural biomass logistics system in bioenergy production. Biosyst Eng 2011:110:280-90. doi:10.1016/j.biosystemseng.2011.08.008
  73. [73] Ravula P. P. Design, simulation, analysis and optimization of transportation system for a biomass to ethanol conversion plant. Doctoral thesis, Virginia Polytechnic Institute and State University, 2007.
  74. [74] Welfle A., Gilbert P., Thornley P. Increasing biomass resource availability through supply chain analysis. Biomass and Bioenergy 2014:70:249-266. doi:10.1016/j.biombioe.2014.08.001
  75. [75] Runge K., Blumberga A., Blumberga D. Bioeconomy growth in Latvia. System-dynamics model for high-value added products in fisheries. Energy Procedia 2017:113:339-345. doi:10.1016/j.egypro.2017.04.075
  76. [76] Blumberga A., Timma L., Blumberga D. System Dynamic Model for the Accumulation of Renewable Electricity using Power-to-Gas and Power-to-Liquid Concepts. Environmental and Climate Technologies 2015:16:54-69. doi:10.1515/rtuect-2015-0012.
DOI: https://doi.org/10.2478/rtuect-2018-0010 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 149 - 164
Published on: Dec 31, 2018
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2018 Kriss Spalvins, Dagnija Blumberga, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.