Have a personal or library account? Click to login
The Assessment of Cost of Biomass from Post-Mining Peaty Lands for Pellet Fabrication Cover

The Assessment of Cost of Biomass from Post-Mining Peaty Lands for Pellet Fabrication

Open Access
|Dec 2018

References

  1. [1] Wichtmann W., Oehmke C., Barisch S., Deschan F., Malashevich U., Tanneberger F. Combustibility of biomass from wet fens in Belarus and its potential as a substitute for peat in fuel briquettes. Mires and Peat 2014:1-10.
  2. [2] Karki S., Elsgaard L., Lærke P. E. Effect of reed canary grass cultivation on greenhouse gas emission from peat soil at controlled rewetting. Biogeosciences 2015:12:595-606. doi:10.5194/bg-12-595-2015
  3. [3] Cooper D. J., MacDonald L. H. Restoring the vegetation of mined peatlands in the southern Rocky Mountains of Colorado. Restoration Ecology 2000:8(2):103-111.10.1046/j.1526-100x.2000.80016.x
  4. [4] Harpenslager S. F., van den Elzen E., Kox M. A. R., Smolders A. J. P., Ettwig K. F., Lamers L. P. M. Rewetting former agricultural peatlands: Topsoil removal as aprerequisite to avoid strong nutrient and greenhouse gas emissions. Ecological Engineering 2015:84:159-168. doi:10.1016/j.ecoleng.2015.08.002
  5. [5] Paludiculture. Sustainable productive utilisation of rewetted peatlands. 2018. Available: http://www.succow-stiftung.de/tl_files/pdfs_downloads/Buecher%20und%20Broschueren/Bochure%20Paludiculture.pdf [Accessed: 30.10.2018].
  6. [6] Temmink R. J. M., Fritz C., van Dijk G., Hensgens G., Lamers L. P. M., Krebs M., Gaudig G., Joosten H. Sphagnum farming in a eutrophic world: The importance of optimal nutrient stoichiometry. Ecological Engineering 2017:98:196-205. doi:10.1016/j.ecoleng.2016.10.069
  7. [7] Kundas S., Wichtman W., Rodzkin A., Pashinsky V. Use of biomass from wet peatland for energy purpose. International and renewable energy sources as alternative primary energy sources in the region: 8 Int. Scientific Conference, 2-3 April 2015, Lviv.
  8. [8] Shurpali N. J., Strandman H., Kilpelainenw A., Huttunen J., Hyvonen N., Biasi C., Kellomakiw S., Martikainen P. Atmospheric impact of bioenergy based on perennial crop (reed canary grass, Phalaris arundinaceae, L.) cultivation on a drained boreal organic soil. GCB Bioenergy 2010:2:130-138. doi:10.1111/j.1757-1707.2010.01048.x
  9. [9] Wichmann S., Kobbing J. F. Common reed for thatching - A first review of the European market. Industrial Crops and Products 2015:77:1063-1073. doi:10.1016/j.indcrop.2015.09.027
  10. [10] Kuzovkina J., Martin F. Willows beyond wetlands: uses of Salix l. species for environmental projects. Water, Air, and Soil Pollution 2005, 162. P.183-204. doi:10.1007/s11270-005-6272-5
  11. [11] Abrahamson L., Volk T., Smart L., Cameron K. Willow Biomass Producer’s Handbook. State University of New York, 2002.
  12. [12] Dimitriou J., Aronsson P. Willows for energy and phytoremediation in Sweden. Unasylva, 2005.
  13. [13] Mosiej J., Karczmarczyk A., Wyporska K., Rodzkin A. Biomass Production in Energy Forests. Ecosystem Health and Sustainable Agriculture 3. Uppsala University, 2012.
  14. [14] Schweier J., Becker G. Harvesting of short rotation coppice - harvesting trials with a cut and storage system in Germany. Silva Fennica 2012:46(2):287-299.10.14214/sf.61
  15. [15] Shuai W., Chen N., Li B., Zhou C., Gao J. Life cycle assessment of common reed (Phragmites australis (Cav) Trin. ex Steud) cellulosic bioethanol in Jiangsu Province, China. Biomass and Bioenergy 2016:92:40-47. doi:10.1016/j.biombioe.2016.06.002
  16. [16] Unpinit T., Poblarp T., Sailoon N., Wongwicha P., Thabuota M. Fuel Properties of Bio-Pellets Produced from Selected Materials under Various Compacting Pressure. Energy Procedia 2015:79:657-66.10.1016/j.egypro.2015.11.551
  17. [17] Thabuota M., Pagketanang T., Panyacharoen K., Mongkut P., Wongwicha P. Effect of Applied Pressure and Binder Proportion on the Fuel Properties of Holey Bio-Briquettes. Energy Procedia 2015:79:890-895.10.1016/j.egypro.2015.11.583
  18. [18] Lamidi R. O., Wanga Y., Patharea P. B., Roskilly A. P., Calispa Aguilar M. Biogas Tri-generation for Postharvest Processing of Agricultural Products in a Rural Community: Techno-economic Perspectives. Energy Procedia 2017:142:63-69. doi:10.1016/j.egypro.2017.12.011
  19. [19] Rodzkin A., Shkutnik O., Krstich B., Borisev M. Environmental background of fast-growing willow production on different type of soil. Safe food. XVI International Eco-conference, 26-29 September 2012, Novi Sad.
  20. [20] Kundas S., Wichtman W., Rodzkin A., Pashinsky V. Use of biomass from wet peatland for energy purpose. International and renewable energy sources as alternative primary energy sources in the region: 8 International Scientific Conference, 2-3 April 2015, Lviv.
  21. [21] International Organization for Standardization (IOS). Environmental management - Life Cycle Assessment - Principles and Framework. ISO 14040. Geneva, 1997.
  22. [22] Rodzkin A., Kundas S., Wichtmann W. Life cycle assessment of biomass production from drained wetlands areas for composite briquettes fabrication. Energy Procedia 2017:128:261-267. doi:10.1016/j.egypro.2017.09.069
  23. [23] Rodzkin A., Orlovich S., Pilipovich A., Krstich B. Ecological and economic importance of energy crops. Environmental protection of urban and suburban settlements: International eco-conference, Serbia, 25-28 September 2013, Novi Sad.
  24. [24] Eisenbies M. H., Volk T. A., Posselius J., Foster C., Shi S., Karapetyan S. Evaluation of a Single-Pass, Cut and Chip Harvest System on Commercial-Scale, Short-Rotation Shrub Willow Biomass Crops. BioEnergy Research 2014:7(4):1506-1518. doi:10.1007/s12155-014-9482-0
  25. [25] Lord R. A. Reed canary grass (Phalaris arundinacea) outperforms Miscanthus or willow on marginal soils, brownfield and non-agricultural sites for local, sustainable energy crop production. Biomass and Bioenergy 2015:78:110-125. doi:10.1016/j.biombioe.2015.04.015
  26. [26] Bosco S., Nassi N., Nasso D., Roncucci N., Mazzoncini M., Bonari E. Environmental performances of giant reed (Arundo donax L.) cultivated in fertile and marginal lands: A case study in the Mediterranean. Europ. J. Agronomy 2016:78:20-31. doi:10.1016/j.eja.2016.04.006
  27. [27] Rosenqvist H., Roos A., Ling E., Hektor B. Willow growers in Sweden. Biomass and Bioenergy 2000:18:137-145. doi:10.1016/S0961-9534(99)00081-1
  28. [28] Platace R., Adamovics A. Indicators characterizing calorific value of reed canary grass and last year’s grass. Engineering for rural development, Proceedings of 13th International Scientific Conference, 29-30 May 2014, Jelgava.
  29. [29] Willows for Biomass Heating. Available: http://www.sodui.lt/Willows-for-Biomass-Heating-707.html [Accessed: 01.02.18].
  30. [30] Rosenqvist H., Nilsson L. J. Energy Crop Production Costs in the EU. RENEW Renewable fuels for advanced powertrains. Lund University, 2006.
  31. [31] Rosenqvist H., Barry N. An economic analysis of leachate purification through willow-coppice vegetation filters. Bioresource Technology 2004:94:321-329. doi:10.1016/j.biortech.2003.12.017
  32. [32] Krasuska E., Rosenqvist H. Economics of energy crops in Poland today and in the future. Biomass and Bioenergy 2012:38:23-33. doi:10.1016/j.biombioe.2011.09.011
  33. [33] Rosenqvist H., Dawson M. Economics of using wastewater irrigation of willow in Northern Ireland. Biomass and Bioenergy 2005:29:83-92. doi:10.1016/j.biombioe.2005.04.001
  34. [34] Fuel granules. Available: http://www.wood-pellets.com/cgi-bin/cms/index.cgi?lang=2 [Accessed: 01.02.18].
  35. [35] C. Wrobel, B. E. Coulman & D. L. Smith. The potential use of reed canary grass (Phalaris arundinacea L.) as a biofuel crop. Acta Agriculturae Scandinavica Section B - Soil and Plant Science 2009:59:1-18. doi:10.1080/09064710801920230
  36. [36] Porso C. The effect of new raw materials on pellet prices. SLU Uppsala, 2010.
  37. [37] European Pellet Report. PellCert project, 2012.
  38. [38] Proskurina S., Alakangas E., Heinimo J., Mikkilaa M., Vakkilainena E. A survey analysis of the wood pellet industry in Finland: Future perspectives. Energy 2017:118:692-704. doi:10.1016/j.energy.2016.10.102
  39. [39] Massachusetts Department of Energy Resources. Massachusetts SHOPP & Wood Pellet Survey. U.S. EIA SHOPP Conference July 13, 2016.
  40. [40] CO2 European emission allowances. Price commodity. Available: https://markets.businessinsider.com/commodities/co2-emissionsrechte [Accessed: 01.02.18].
DOI: https://doi.org/10.2478/rtuect-2018-0008 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 118 - 131
Published on: Dec 13, 2018
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2018 Aleh Rodzkin, Semjon Kundas, Yauheniya Charnenak, Boris Khroustalev, Wendelin Wichtmann, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.