Have a personal or library account? Click to login
Forecast of Carbon Dioxide Emissions from Energy Consumption in Industry Sectors in Thailand Cover

Forecast of Carbon Dioxide Emissions from Energy Consumption in Industry Sectors in Thailand

Open Access
|Dec 2018

References

  1. [1] Asian Development Bank (ADB). Environment, Climate Change, and Disaster Risk Management. Manila: Asian Development Bank, 2014.
  2. [2] Thailand Development Research Institute (TDRI). Prioritizing Environmental Problems with Environmental Costs. Bangkok: Final report prepared the Thailand Health Fund.
  3. [3] Office of the National Economic and Social Development Board. National Income of Thailand. Bangkok: NESDB, 2015.
  4. [4] Sutthichaimethee P., et al. Environmental problems indicator under environmental modeling toward sustainable development. Global J Environ Sci Manage 2015:4(1):325-332. doi:10.7508/gjesm.2015.04.007
  5. [5] Sutthichaimethee P., Sawangdee Y. Model of Environmental Impact of Service Sectors to Promote Sustainable Development of Thailand. Ethics Sci Environ Polit 2016:16:11-17. doi:10.3354/esep00169
  6. [6] Sutthichaimethee P., Sawangdee Y. Model of Environmental Problems Priority Arising from the use of Environmental and Natural Resources in Machinery Sectors of Thailand. Environmental and Climate Technologies 2016:17:18-29. doi:10.3354/esep00169
  7. [7] Sutthichaimethee P., Ariyasajjakorn D. Forecasting Model of GHG Emission in Manufacturing Sectors of Thailand. Journal of Ecological Engineering 2017:18(1):18-24. doi:10.12911/22998993/64566
  8. [8] Sutthichaimethee P., Tanoamchard W. Carrying Capacity Model of Food Manufacturing Sectors for Sustainable Development from using Environmental and Natural Resources of Thailand. Journal of Ecological Engineering 2015:16(5):1-8. doi:10.12911/22998993/60447
  9. [9] Sutthichaimethee P., et al. Model of Environmental Problems Priority Arising From the Use of Environmental and Natural Resources in Construction Material Sectors of Thailand. Advanced Engineering Forum 2015:14:76-85. doi:10.4028/www.scientific.net/AEF.14.76
  10. [10] Jovanovic R., Sretenovic A., Zivkovic B. Ensemble of various neural networks for prediction of heating energy consumption. Energy Build 2015:94:189-99. doi:10.1016/j.enbuild.2015.02.052
  11. [11] Barak S., Dahooie J. H., Tichy T. Wrapper ANFIS-ICA method to do stock market timing and feature selection on the basis of Japanese Candlestick. Expert Syst Appl 2015:42:9221-35. doi:10.1016/j.eswa.2015.08.010
  12. [12] Azadeh A., Asadzadeh S., Saberi M., Nadimi V., Tajvidi A., Sheikalishahi M. A Neuro-fuzzy-stochastic frontier analysis approach for long-term natural gas consumption forecasting and behaviour analysis: the cases of Bahrain, Saudi Arabia, Syria, and UAE. Appl Energy 2011:88:3850-9. doi:10.1016/j.apenergy.2011.04.027
  13. [13] Sutthichaimethee P. Modeling Environmental Impact of Machinery Sectors to Promote Sustainable Development of Thailand. Journal of Ecological Engineering 2016:17(1):18-25. doi:10.1515/rtuect-2016-0003
  14. [14] Sutthichaimethee P., Sawangdee Y. Indicator of Environmental Problems of Agricultural Sectors under the Environmental Modeling. Journal of Ecological Engineering 2016:17(2):12-18. doi:10.12911/22998993/62280
  15. [15] Yu S., Wei Y.-M., Wang K. A PSO-GA optimal model to estimate primary energy demand of China. Energy Policy 2012:42:329-40. doi:10.1016/j.enpol.2011.11.090
  16. [16] Ciabattoni L., Grisostomi M., Ippoliti G., Longhi S. Fuzzy logic home energy consumption modeling for residential photovoltaic plant sizing in the new Italian scenario. Energy 2014:74:359-67. doi:10.1016/j.energy.2014.06.100
  17. [17] Xie N.-M., Yuan C.-Q., Yang Y.-J. Forecasting China’s energy demand and selfsufficiency rate by grey forecasting model and Markov model. Int J Electr Power Energy Syst 2015:66:1-8. doi:10.1016/j.ijepes.2014.10.028
  18. [18] Kumar U., Jain V. K. Time series models (Grey-Markov, Grey Model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India. Energy 2010:35(4):1709-1716. doi:10.1016/j.energy.2009.12.021
  19. [19] Li C., Hu J.-W. A new ARIMA-based neuro-fuzzy approach and swarm intelligence for time series forecasting. Eng Appl Artif Intell 2012:25:295-308. doi:10.1016/j.engappai.2011.10.005
  20. [20] Pao H.-T., Fu H.-C., Tseng C.-L. Forecasting of CO2 emissions, energy consumption and economic growth in China using an improved grey model. Energy 2012:40:400-409. doi:10.1016/j.energy.2012.01.037
  21. [21] Johansen S., Juselius K. Maximum likelihood estimation and inference on cointegration with applications to the demand for money. Oxford Bull. Econ. Stat. 1990:52:169-210. doi:10.1111/j.1468-0084.1990.mp52002003.x
  22. [22] Sims C. A. Macroeconomics and Reality. Econometrica: Journal of the Econometric Society 1980:48:1-48.10.2307/1912017
  23. [23] Suganthi L., Iniyan S., Samuel A. Applications of fuzzy logic in renewable energy systems - a review. Renew Sustain Energy Rev 2015:48:585-607. doi:10.1016/j.rser.2015.04.037
  24. [24] Kavaklioglu K., Ceylan H., Ozturk H., Canyurt O. Modeling and prediction of Turkey’s electricity consumption using artificial neural networks. Energy Convers Manage 2009:50:2719-27. doi:10.1016/j.enconman.2009.06.016.
DOI: https://doi.org/10.2478/rtuect-2018-0007 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 107 - 117
Published on: Dec 5, 2018
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2018 Pruethsan Sutthichaimethee, Danupon Ariyasajjakorn, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.