Have a personal or library account? Click to login
Clayton Copula as an Alternative Perspective of Multi-Reaction Model Cover

Clayton Copula as an Alternative Perspective of Multi-Reaction Model

Open Access
|Nov 2018

References

  1. [1] Dhaundiyal A., Gupta V. K. The Analysis of Pine Needles as a Substrate for Gasification. J. Water Energy Environ. 2014:15:73-81. doi:10.3126/hn.v15i0.11299
  2. [2] Dhaundiyal A., Tewari P. C. Comparative analysis of pine needles and coal for electricity generation using carbon taxation and emission reductions. Acta Technol. Agric. 2015:18(2):29-35. doi:10.1515/ata-2015-0007
  3. [3] Dhaundiyal A., Tewari P. C. Performance evaluation of throatless gasifier using pine needles as a feedstock for power generation. Acta Technol. Agric. 2016:19(1):10-18. doi:10.1515/ata-2016-0003
  4. [4] Dhaundiyal A., Singh S. B. Distributed activation energy modelling for pyrolysis of forest waste using gaussian distribution. Proc. Latv. Acad. Sci. Sect. B 2016:70(2):64-70. doi:10.1515/prolas-2016-0011
  5. [5] Dhaundiyal A., Tewari P. C. Kinetic Parameters for the Thermal Decomposition of Forest Waste Using Distributed Activation Energy Model (DAEM). Environment and Climate Technologies 2017:19(1):15-32. doi:10.1515/rtuect-2017-0002
  6. [6] Kader M. A., Islam M. R., Parveen M., Haniu H., Takai K. Pyrolysis decomposition of tamarind seed for alternative fuel. Bioresour. Technol. 2014:149:1-7. doi:10.1016/j.biortech.2013.09.032
  7. [7] Gaqa S., Mamphweli S., Katwire D., Meyer E. Synergistic evaluation of the biomass/coal blends for cogasification purposes. Int. J. Energy Environ. (IJEE) 2014:5(2):251-256.
  8. [8] Vyazovkin S., Wight C. A. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochimica acta 1999:340-341:53-68. doi:10.1016/S0040-6031(99)00253-1
  9. [9] Capart R., Khezami L., Burnham A. K. Assessment of various kinetic models for the pyrolysis of a microgranular cellulose. Thermochim. Acta 2004:417(1):79-89. doi:10.1016/j.tca.2004.01.029
  10. [10] Conesa J. A., Caballero J. A., Marcilla A., Font R. Analysis of different kinetic models in the dynamic pyrolysis of cellulose. Thermochim. Acta 1995:254:175-192. doi:10.1016/0040-6031(94)02102-T
  11. [11] Conesa J. A., Marcilla A., Caballero J. A., Font R. Comments on the validity and utility of the different methods for kinetic analysis of thermogravimetric data. J. Anal. Appl. Pyrolysis 2001:58-59:617-633. doi:10.1016/S0165-2370(00)00130-3
  12. [12] Pysiak J. J., Al.-Badwi Y. A. Kinetic equations for thermal dissociation processes. J. Therm. Anal. Calorim. 2004:76(2):521-528. doi:10.1023/B:JTAN.0000028030.49773.ad
  13. [13] Yaroshenko A. P. Theoretical model and experimental study of pore growth during thermal expansion of graphite intercalation compounds. J. Therm. Anal. Calorim. 2005:79(3):515-519. doi:10.1007/s10973-005-0571-3
  14. [14] Criado J. M., Perez-Maqueda L. A. Sample controlled thermal analysis and kinetics. J. Therm. Anal. Calorim. 2005:80(1):27-33. doi:10.1007/s10973-005-0609-6
  15. [15] Burnham A. K., Braun R. L. Global kinetic analysis of complex materials. Energy Fuels 1999:13(1):1-22. doi:10.1021/ef9800765
  16. [16] Burnham A. K., Schmidt B. J., Braun R. L. A test of parallel reaction model using kinetic measurements on hydrous pyrolysis residues. Org. Geochem. 1995:23(10):931-939. doi:10.1016/0146-6380(95)00069-0
  17. [17] Galgano A., Blasi C. D. Modeling Wood Degradation by the Unreacted-Core-Shrinking Approximation. Ind. Eng. Chem. Res. 2003:42(10):2101-2111. doi:10.1021/ie020939o
  18. [18] Ferdous D., Dalai A. K., Bej S. K., Thring R. W. Pyrolysis of Lignins: Experimental and Kinetics Studies. Energy Fuels 2002:16(6):1405-1412. doi:10.1021/ef0200323
  19. [19] Dhaundiyal A., Singh S. B. Mathematical insight to non-isothermal pyrolysis of pine needles for different probability distribution functions. Biofuels 2017:1-12. doi:10.1080/17597269.2017.1329495
  20. [20] Cai J. M., He F., Yao F. S. Non-isothermal nth-order DAEM equation and its parametric study - Use in the kinetic analysis of biomass pyrolysis. J. Math. Chem. 2006:42(4):949-956. doi:10.1007/s10910-006-9151-4
  21. [21] Dhaundiyal A., Singh S. B. Asymptotic approximations to the distributed activation energy model for non-isothermal pyrolysis of loose biomass using the weibull distribution. Arch. Combust. 2016:36(2):131-146.
  22. [22] Dhaundiyal A., Singh S. B. Approximations to the Non-Isothermal Distributed Activation Energy Model for Biomass Pyrolysis Using the Rayleigh Distribution. Acta Technol. Agric. 2017:20(3):78-84. doi:10.1515/ata-2017-0016
  23. [23] Dhaundiyal A., Singh S. B. Implementation of Fuzzy Sets in the Non-Isothermal Pyrolysis of Biomass. J. Nat. Resour. Dev. 2017:7:30-37.10.5027/jnrd.v7i0.04
  24. [24] Niksa S., Lau C. W. Global rates of devolatilization for various coal types. Combus. Flame 1993:94(3):293-307. doi:10.1016/0010-2180(93)90075-E
  25. [25] Dhaundiyal A., Singh S. B. Parametric Study of nth Order Distributed Activation Energy Model for Isothermal Pyrolysis of Forest Waste Using Gaussian Distribution. Acta Technologica Agriculturae 2017:20(1):23-28. doi:10.1515/ata-2017-0005
  26. [26] Howard J. B. Fundamentals of Coal Pyrolysis and Hydropyrolysis: Chemistry of Coal Utilization. New York: John Wiley and Sons, 1981.
  27. [27] Vand V. Theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum. Proc. Phys. Soc. Lond. A 1943:55(3):222-246.10.1088/0959-5309/55/3/308
  28. [28] Pitt G. J. The kinetics of the evolution of volatile products from coal. Fuel 1962:41:267-274.
  29. [29] Suuberg E. M. Approximate solution technique for nonisothermal, Gaussian distributed activation energy models. Combust. Flame 1983:50:243-245. doi:10.1016/0010-2180(83)90066-4
  30. [30] Kumar D., Singh S. B. Stochastic Analysis of Complex Repairable System with Deliberate Failure Emphasizing Reboot Delay. Commun. Stat. Simul. Comput. 2016:45(2):583-602. doi:10.1080/03610918.2013.867993
  31. [31] Mangey R., Singh S. B., Singh V. V. Stochastic Analysis of a Standby System with waiting repair strategy. IEEE Trans. Syst. Man Cybern. Syst. 2013:43(3):698-707. doi:10.1109/TSMCA.2012.2217320
  32. [32] Nailwal B., Singh S. B. Performance evaluation and reliability analysis of a complex system with three possibilities in repair with the application of copula. Int. J. Reliab. Appl. 2011:12(1):15-39.
  33. [33] Oakes D. On the preservation of copula structure under truncation. Can. J. Stat. 2005:33(3):465-468. doi:10.1002/cjs.5540330310
  34. [34] de Caprariis B., de Filippis P., Herce C., Verdone N. Double-gaussian distributed activation energy model for coal devolatilization. Energy Fuels 2012:26(10):6153-6159. doi:10.1021/ef301092r
  35. [35] Zhang J., Chen T., Wu J., Wu J. Multi-Gaussian-DAEM-reaction model for thermal decompositions of cellulose, hemicellulose and lignin: Comparison of N2 and CO2 atmosphere. Bioresour. Technol. 2014:166:87-95. doi:10.1016/j.biortech.2014.05.030
  36. [36] Yang X., Zhang R., Fu J., Geng S., Cheng J. J., Sun Y. Pyrolysis kinetic and product analysis of different microalgal biomass by distributed activation energy model and pyrolysis-gas chromatography-mass spectrometry. Bioresour. Technol. 2014:163:335-342. doi:10.1016/j.biortech.2014.04.040
  37. [37] Quan C., Li A., Gao N. Thermogravimetric analysis and kinetic study on large particles of printed circuit board wastes. Waste Management 2009:29(8):2353-2360. doi:10.1016/j.wasman.2009.03.020.
DOI: https://doi.org/10.2478/rtuect-2018-0006 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 83 - 106
Published on: Nov 21, 2018
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2018 Alok Dhaundiyal, Suraj B. Singh, Muammel M. Hanon, Norbert Schrempf, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.