[1] Dhaundiyal A., Gupta V. K. The Analysis of Pine Needles as a Substrate for Gasification. J. Water Energy Environ. 2014:15:73-81. doi:10.3126/hn.v15i0.11299
[2] Dhaundiyal A., Tewari P. C. Comparative analysis of pine needles and coal for electricity generation using carbon taxation and emission reductions. Acta Technol. Agric. 2015:18(2):29-35. doi:10.1515/ata-2015-0007
[3] Dhaundiyal A., Tewari P. C. Performance evaluation of throatless gasifier using pine needles as a feedstock for power generation. Acta Technol. Agric. 2016:19(1):10-18. doi:10.1515/ata-2016-0003
[4] Dhaundiyal A., Singh S. B. Distributed activation energy modelling for pyrolysis of forest waste using gaussian distribution. Proc. Latv. Acad. Sci. Sect. B 2016:70(2):64-70. doi:10.1515/prolas-2016-0011
[5] Dhaundiyal A., Tewari P. C. Kinetic Parameters for the Thermal Decomposition of Forest Waste Using Distributed Activation Energy Model (DAEM). Environment and Climate Technologies 2017:19(1):15-32. doi:10.1515/rtuect-2017-0002
[6] Kader M. A., Islam M. R., Parveen M., Haniu H., Takai K. Pyrolysis decomposition of tamarind seed for alternative fuel. Bioresour. Technol. 2014:149:1-7. doi:10.1016/j.biortech.2013.09.032
[7] Gaqa S., Mamphweli S., Katwire D., Meyer E. Synergistic evaluation of the biomass/coal blends for cogasification purposes. Int. J. Energy Environ. (IJEE) 2014:5(2):251-256.
[8] Vyazovkin S., Wight C. A. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochimica acta 1999:340-341:53-68. doi:10.1016/S0040-6031(99)00253-1
[9] Capart R., Khezami L., Burnham A. K. Assessment of various kinetic models for the pyrolysis of a microgranular cellulose. Thermochim. Acta 2004:417(1):79-89. doi:10.1016/j.tca.2004.01.029
[10] Conesa J. A., Caballero J. A., Marcilla A., Font R. Analysis of different kinetic models in the dynamic pyrolysis of cellulose. Thermochim. Acta 1995:254:175-192. doi:10.1016/0040-6031(94)02102-T
[11] Conesa J. A., Marcilla A., Caballero J. A., Font R. Comments on the validity and utility of the different methods for kinetic analysis of thermogravimetric data. J. Anal. Appl. Pyrolysis 2001:58-59:617-633. doi:10.1016/S0165-2370(00)00130-3
[12] Pysiak J. J., Al.-Badwi Y. A. Kinetic equations for thermal dissociation processes. J. Therm. Anal. Calorim. 2004:76(2):521-528. doi:10.1023/B:JTAN.0000028030.49773.ad
[13] Yaroshenko A. P. Theoretical model and experimental study of pore growth during thermal expansion of graphite intercalation compounds. J. Therm. Anal. Calorim. 2005:79(3):515-519. doi:10.1007/s10973-005-0571-3
[14] Criado J. M., Perez-Maqueda L. A. Sample controlled thermal analysis and kinetics. J. Therm. Anal. Calorim. 2005:80(1):27-33. doi:10.1007/s10973-005-0609-6
[16] Burnham A. K., Schmidt B. J., Braun R. L. A test of parallel reaction model using kinetic measurements on hydrous pyrolysis residues. Org. Geochem. 1995:23(10):931-939. doi:10.1016/0146-6380(95)00069-0
[17] Galgano A., Blasi C. D. Modeling Wood Degradation by the Unreacted-Core-Shrinking Approximation. Ind. Eng. Chem. Res. 2003:42(10):2101-2111. doi:10.1021/ie020939o
[18] Ferdous D., Dalai A. K., Bej S. K., Thring R. W. Pyrolysis of Lignins: Experimental and Kinetics Studies. Energy Fuels 2002:16(6):1405-1412. doi:10.1021/ef0200323
[19] Dhaundiyal A., Singh S. B. Mathematical insight to non-isothermal pyrolysis of pine needles for different probability distribution functions. Biofuels 2017:1-12. doi:10.1080/17597269.2017.1329495
[20] Cai J. M., He F., Yao F. S. Non-isothermal nth-order DAEM equation and its parametric study - Use in the kinetic analysis of biomass pyrolysis. J. Math. Chem. 2006:42(4):949-956. doi:10.1007/s10910-006-9151-4
[21] Dhaundiyal A., Singh S. B. Asymptotic approximations to the distributed activation energy model for non-isothermal pyrolysis of loose biomass using the weibull distribution. Arch. Combust. 2016:36(2):131-146.
[22] Dhaundiyal A., Singh S. B. Approximations to the Non-Isothermal Distributed Activation Energy Model for Biomass Pyrolysis Using the Rayleigh Distribution. Acta Technol. Agric. 2017:20(3):78-84. doi:10.1515/ata-2017-0016
[23] Dhaundiyal A., Singh S. B. Implementation of Fuzzy Sets in the Non-Isothermal Pyrolysis of Biomass. J. Nat. Resour. Dev. 2017:7:30-37.10.5027/jnrd.v7i0.04
[25] Dhaundiyal A., Singh S. B. Parametric Study of nth Order Distributed Activation Energy Model for Isothermal Pyrolysis of Forest Waste Using Gaussian Distribution. Acta Technologica Agriculturae 2017:20(1):23-28. doi:10.1515/ata-2017-0005
[27] Vand V. Theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum. Proc. Phys. Soc. Lond. A 1943:55(3):222-246.10.1088/0959-5309/55/3/308
[29] Suuberg E. M. Approximate solution technique for nonisothermal, Gaussian distributed activation energy models. Combust. Flame 1983:50:243-245. doi:10.1016/0010-2180(83)90066-4
[30] Kumar D., Singh S. B. Stochastic Analysis of Complex Repairable System with Deliberate Failure Emphasizing Reboot Delay. Commun. Stat. Simul. Comput. 2016:45(2):583-602. doi:10.1080/03610918.2013.867993
[31] Mangey R., Singh S. B., Singh V. V. Stochastic Analysis of a Standby System with waiting repair strategy. IEEE Trans. Syst. Man Cybern. Syst. 2013:43(3):698-707. doi:10.1109/TSMCA.2012.2217320
[32] Nailwal B., Singh S. B. Performance evaluation and reliability analysis of a complex system with three possibilities in repair with the application of copula. Int. J. Reliab. Appl. 2011:12(1):15-39.
[34] de Caprariis B., de Filippis P., Herce C., Verdone N. Double-gaussian distributed activation energy model for coal devolatilization. Energy Fuels 2012:26(10):6153-6159. doi:10.1021/ef301092r
[35] Zhang J., Chen T., Wu J., Wu J. Multi-Gaussian-DAEM-reaction model for thermal decompositions of cellulose, hemicellulose and lignin: Comparison of N2 and CO2 atmosphere. Bioresour. Technol. 2014:166:87-95. doi:10.1016/j.biortech.2014.05.030
[36] Yang X., Zhang R., Fu J., Geng S., Cheng J. J., Sun Y. Pyrolysis kinetic and product analysis of different microalgal biomass by distributed activation energy model and pyrolysis-gas chromatography-mass spectrometry. Bioresour. Technol. 2014:163:335-342. doi:10.1016/j.biortech.2014.04.040
[37] Quan C., Li A., Gao N. Thermogravimetric analysis and kinetic study on large particles of printed circuit board wastes. Waste Management 2009:29(8):2353-2360. doi:10.1016/j.wasman.2009.03.020.