[3] Hogland M., Berg B., Hogland W., Marques M. Planning of and economic constrains related to a landfill mining project in Norway. Presented at Proceedings of the 12th International Waste Management and Landfill Symposium Sardinia, 2009.
[4] Bosmans A., Helsen L. Energy from waste: review of thermochemical Technologies for refuse derived fuel (RDF) treatment. Presented at Third International Symposium on Energy from Biomass and Waste in Venice, 2010.
[5] Burlakovs J., Kriipsalu M., Arina D., Kaczala F., Shmarin S., Denafas G., Hogland W. Former dump sites and the landfill mining perspectives in Baltic countries and Sweden: The status. Proceedings of the 13th SGEM GeoConference on Science and Technologies in Geology, Exploration and Mining 2013:1:485-492.10.5593/SGEM2013/BA1.V1/S03.035
[6] Hogland W. Remediation of an old landsfill site: Soil analysis, leachate quality and gas production. Environmental Science and Pollution Research International 2002:1:49-54. 10.1007/BF02987426
[7] Hogland M., Hogland W., Marques M. Enhanced Landfill Mining: Material recovery, energy utilisation and economics in the EU (Directive) perspective. Presented at International Academic Symposium on Enhanced Landfill Mining, 2010.
[10] Castaldi M. J., Themelis N. J. The case for increasing the global capacity for Waste to Energy (WTE). Waste and Biomass Valorization 2010:1:91-105. doi:10.1007/s12649-010-9010-110.1007/s12649-010-9010-1
[11] Giugliano M., Grosso M., Rigamonti L. Energy recovery from municipal waste: A case study for a middle-sized Italian district. Waste Management 2008:28(1):39-50. doi:10.1016/j.wasman.2006.12.01810.1016/j.wasman.2006.12.018
[12] Polettini A. State of the knowledge and research needs in bottom ash management. Presented at Twelfth International Waste Management and Landfill Symposium, S. Margherita di Pula, Cagliari, Italy, 2009.
[13] Dijkstra J. J., van der Sloot H. A., Comans R. N. J. Process identification and model development of contaminant transport in MSWI bottom ash. Waste Management 2002:22(2):531-541. 10.1016/S0956-053X(01)00034-4
[14] Kosson D. S., van der Sloot H. A., Sanchez F., Garrabrants A. C. An integrated framework for evaluating leaching in waste management and utilization of secondary materials. Environmental Engineering Science 2002:19:159-204. doi:10.1089/10928750276007918810.1089/109287502760079188
[15] Ecke H., Aberg A. Quantification of the effects of environmental leaching factors on emissions from bottom ash in road construction. Science of the Total Environment 2006:362:42-49. doi:10.1016/j.scitotenv.2005.09.05710.1016/j.scitotenv.2005.09.057
[16] Chang N., Wang H. P., Huang W. L., Lin K. S. The assessment of reuse potential for municipal solid waste and refuse-derived fuel incineration ashes. Resource Conservation and. Recycling 1999:25:255-270. 10.1016/S0921-3449(98)00066-4
[17] Onori R., Polettini A., Pomi R. Mechanical properties and leaching modeling of activated incinerator bottom ash in Portland cement blends. Waste Management 2011:31(2):298-310. doi:10.1016/j.wasman.2010.05.02110.1016/j.wasman.2010.05.021
[18] Travar I., Lidelow S., Andreas L., Tham G., Lagerkvist A. Assessing the environmental impact of ashes used in a landfill cover construction. Waste Management 2011:29(4):1336-1346. doi:10.1016/j.wasman.2008.09.00910.1016/j.wasman.2008.09.009
[19] Baciocch R., Cost G., Lategan E., Marini C., Polettini A., Pomi R., Postorino P., Rocca S. Accelerated carbonation of different size fractions of bottom ash from RDF incineration. Waste Management 2010:30(7):1310-1317. doi:10.1016/j.wasman.2009.11.02710.1016/j.wasman.2009.11.027
[20] Sivula L., Ilander A., Vaisanen A., Rintala J. Weathering of gasification and grate bottom ash in anaerobic conditions. Journal of Hazardous Materials 2010:174(1-3):344-351. doi:10.1016/j.jhazmat.2009.09.05610.1016/j.jhazmat.2009.09.056
[22] Hogland M., Arina D., Kriipsalu M., Jani Y., Kaczala F., Salomao A. L., Orupold K., Pehme K. M., Rudovica V., Denafas G., Burlakovs J., Vincevica-Gaile Z., Hogland W. Remarks on four novel landfill mining case studies in Estonia and Sweden. Journal of Material Cycles and Waste Management 2018:20(2):1355-1363. doi:10.1007/s10163-017-0683-410.1007/s10163-017-0683-4
[26] Hla S. S., Roberts D. G., Harris D. J. A numerical model for understanding the behaviour of coals in an entrained-flow gasifier. Fuel Processing Technology 2015:134:424-440. doi:10.1016/j.fuproc.2014.12.05310.1016/j.fuproc.2014.12.053
[27] Knoef H. A. M. Inventory of biomass gasifier manufacturers and installations. Final Report to European Commission. Enschede: University of Twente, 2000.
[29] La Villetta M., Costab M., Massarotti N. Modelling approaches to biomass gasification: A review with emphasis on the stoichiometric method. Renewable and Sustainable Energy Reviews 2017:74:71-88. doi:10.1016/j.rser.2017.02.02710.1016/j.rser.2017.02.027
[32] Ciferno J. P., Marano J. J. Benchmarking Biomass Gasification Technologies for Fuels, Chemicals and Hydrogen Production. Prepared for U.S. Pittsburgh: Department of Energy, 2002.
[34] Phillips J. Different types of gasifiers and their integration with gas turbines. The Gas Turbine Handbook. Morgantown: National Energy Technology Laboratory, 2006.
[35] Richardson Y., Blin J., Julbe A. A short overview on purification and conditioning of syngas produced by biomass gasification: catalytic strategies, process intensification and new concepts. Progress in Energy and Combustion Science 2012:38(6):765-781. doi:10.1016/j.pecs.2011.12.00110.1016/j.pecs.2011.12.001
[36] Nand S., Mohammad J., Reddy S. N., Kozinski J. A., Dalai A. K. Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Conversion and Biorefining 2014:4(2):157-191. doi:10.1016/j.pecs.2011.12.00110.1016/j.pecs.2011.12.001
[37] Subramani V., Gangwal S. K. A review of recent literature to search for an efficient catalytic. Process for the conversion of syngas to ethanol. Energy Fuels 2008:22(2):814-839. doi:10.1021/ef700411x10.1021/ef700411x
[38] Griffin D. W., Schultz M. A. Fuel and chemical products from biomass syngas: a comparison of gas fermentation to thermochemical conversion routes. Environmental Progress and Sustainable Energy 2012:31(2):219-224. doi:10.1002/ep.1161310.1002/ep.11613
[39] Craig K. R., Mann M. K. Cost and performance analysis of biomass-based integrated gasification combined-cycle (BIGCC) power systems. NREL/TP-430-21657. Golden: National Renewable Energy Laboratory, 1996. 10.2172/419974
[40] Nickerson T. A., Hathaway B. J., Smith T. M., Davidson J. H. Economic assessment of solar and conventional biomass gasification technologies: Financial and policy implications under feedstock and product gas price uncertainty. Biomass and Bioenergy 2015:74:47-57. doi:10.1016/j.biombioe.2015.01.00210.1016/j.biombioe.2015.01.002
[42] Buragohain B., Mahanta P., Moholkar V. S. Biomass gasification for decentralized power generation:the Indian perspective. Renewable and Sustainable Energy Reviews 2010:14:73-92. doi:10.1016/j.rser.2009.07.03410.1016/j.rser.2009.07.034
[43] Tapas K. P., Pratik N. Sheth N. Biomass gasification models for downdraft gasifier: A state-of-the-art review. Renewable and Sustainable Energy Reviews 2015:50:583-593. doi:10.1016/j.rser.2015.05.01210.1016/j.rser.2015.05.012
[45] Huber G. W., Iborra S., Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chemical Reviews 2006:106:4044-4098. doi:10.1021/cr068360d10.1021/cr068360d
[47] Klimantos P., Koukouzas N., Katsiadakis A., Kakaras E. Air-blown biomass gasification combined cycles (BGCC): system analysis and economic assessment. Energy 2009:34(5):708-714. doi:10.1016/j.energy.2008.04.00910.1016/j.energy.2008.04.009
[48] Chaiwat W., Hasegawa I., Mae K. Examination of the low-temperature region in a downdraft gasifier for the pyrolysis product analysis of biomass air gasification. Industrial Engineering and Chemistry Research 2009:48:8934-8943. 10.1021/ie900264n
[50] Khan A. A., de Jong W., Jansens P. J., Spliethoff H. Biomass combustion in fluidized bed boilers: potential problems and remedies. Fuel Processing Technology 2009:90:21-50. doi:10.1016/j.fuproc.2008.07.01210.1016/j.fuproc.2008.07.012
[53] Chan F. L., Tanksale A. Review of recent developments in Ni-based catalysts for biomass gasification. Renewable and Sustainable Energy Reviews 2014:38:428-438. doi:10.1016/j.rser.2014.06.01110.1016/j.rser.2014.06.011
[55] Devi L., Ptasinski K. J., Janssen F. J. J. G. A review of the primary measures for tar elimination in biomass gasification processes. Biomass Bioenergy 2003:24:125-140. doi:10.1016/S0961-9534(02)00102-210.1016/S0961-9534(02)00102-2
[56] Rehling B., Hofbauer H., Rauch R., Tremmel H., Aichernig C., Schildhauer T. Bio-SNG-first results of the 1MW pilot and demonstration unit at Güssing, 2009.
[57] Hermana A. P., Yusupa S., Shahbaza M., Patricka S. O., Khan Z., Yusup S., Ahmad M. M., Rashidi N. A. Integrated catalytic adsorption (ICA) steam gasification system for enhanced hydrogen production using palm kernel shell. International Journal of Hydrogen Energy 2014:39:3286-3293. doi:10.1016/j.enconman.2014.03.02410.1016/j.enconman.2014.03.024
[59] Wiedinmyer C., Yokelson R. J., Gullet B. K. Global emissions of trace gases, particulate matter, and hazardous air pollutants from open burning of domestic waste. Environmental Science and Technology 2014:48(16):9523-9530. doi:10.1021/es502250z10.1021/es502250z
[60] Smith L., Sengupta D., Takkellapati S., Lee. C. C. An industrial ecology approach to municipal solid wastemanagement: II. Case studies for recovering energy from the organicfraction of MSW. Resources, Conservation and Recycling 2015:104:317-326. doi:10.1016/j.resconrec.2015.05.01610.1016/j.resconrec.2015.05.016
[64] Brown R. C., Biomass refineries based on hybrid thermochemical-biological processing an overview. Biorefineries - Industrial Processes and Products: Status Quo and Future Directions. Weinheim: Wiley-VCH Verlag GmbH & Co.KG, 2006. 10.1002/9783527619849.ch11
[65] Milne T. A., Elam C. C., Evans R. J. Hydrogen from biomass. State of the art and research challenges. IEA/H2/TR-02/001. Golden: National Renewable Energy Laboratory, 2002. 10.2172/792221
[66] Sims R., Taylor M., Saddler J., Mabee W. From 1st- to 2nd-generation biofuel technologies. An overview of current industry and RD&D activities. International Energy Agency, 2008.
[67] Gil J. El problema de los alquitranes en la gasificaci on de biomasa, Infopower (in Spanish). Actual. Tecnol. Prod. uso Efic. energía 2005:79:88-94.
[68] Milne T. A., Evans R. J., Abatzoglou N. Biomass gasifier “tars”: their nature, formation, and conversion. NREL/TP-570-25357. Golden: National Renewable Energy Laboratory, 1998. 10.2172/3726
[69] Li C., Suzuki K. Tar property, analysis, reforming mechanism and model for biomass gasification-An overview. Renewable and Sustainable Energy Review 2009:13(3):594-604. doi:10.1016/j.rser.2008.01.00910.1016/j.rser.2008.01.009
[71] Hindsgaul C., Schramm J., Gratz L., Henriksen U., Bentzen J. Physical and chemical characterization of particles in producer gas from wood chips. Bioresource Technology 2000:73:147-155. doi:10.1016/S0960-8524(99)00153-410.1016/S0960-8524(99)00153-4
[72] Fitzpatrick E. M., Bartle K. D., Kubacki M. L., Jones J. M., Pourkashanian M., Ross A. B. The mechanism of the formation of gasification particles and other pollutants during the co-firing of coal and pinewood in a fixed bed combustor. Fuel 2009:88 (12):2409-2417. doi:10.1016/j.fuel.2009.02.03710.1016/j.fuel.2009.02.037
[75] Tammeorg P., Bastos A., Jeffery S., Rees F., Juergen K., Graber E., Ventura M., Kibblewhite M., Amaro A., Budai A., Cordovil C., Domene X., Gardi C., Gasco G., Horak J., Kammann C., Kondrlova E., Laird D., Loureiro S., Martins M. Biochars in soils: towards the required level of scientific understanding. Journal of Environmental Engineering and Landscape Management 2016:25(2):192-207. doi:10.3846/16486897.2016.123958210.3846/16486897.2016.1239582
[76] Komkiene J., Baltrenaite E. Biochar as adsorbent for removal of heavy metal ions (cadmium(II), copper(II), lead(II), zinc(II)) from aqueous phase. International Journal of Environmental Science and Technology 2016:13(2):471-482. doi:10.1007/s13762-015-0873-310.1007/s13762-015-0873-3
[77] Hilber I., Bastos A., Loureiro S., Soja G., Marsz A., Cornelissen G., Bucheli T. The different faces of biochar: contamination risk versus remediation tool. Journal of Environmental Engineering and Landscape Management 2017:86-104. doi:10.3846/16486897.2016.125408910.3846/16486897.2016.1254089
[78] Hafshejani L. D., Hooshmand A., Naseri A. A., Mohammadi A. S., Abbasi F., Bhatnagar A. Removal of nitrate from aqueous solution by modified sugarcane bagasse biochar. Ecological Engineering 2016:95:101-111. doi:10.1016/j.ecoleng.2016.06.03510.1016/j.ecoleng.2016.06.035
[80] Baltrenaite E., Baltrenas P., Bhatnagar A., Vilppo T., Selenius M., Koistinen A., Dahl M. Penttinen O. P. A multicomponent approach to using waste-derived biochar in biofiltration: A case study based on dissimilar types of waste. International Biodeterioration & Biodegradation 2016:119:565-576. doi:10.1016/j.ibiod.2016.10.05610.1016/j.ibiod.2016.10.056
[81] Galhetas M., Lopes H., Freire M., Abelha P., Pinto F., Gulyurtlu I. Characterization, leachability and valorization through combustion of residual chars from gasification of coals with pine. Waste Management 2012:32:769-779. 10.1016/j.wasman.2011.08.021
[82] Garcia-Garcia A., Gregorio A., Franco C., Pinto F., Boavida D., Gulyurtlu I. Unconverted chars obtained during biomass gasification on a pilot-scale gasifier as a source of activated carbon production. Bioresource Technology 2003:88(1):27-32. doi:10.1016/S0960-8524(02)00266-310.1016/S0960-8524(02)00266-3
[83] Boateng A., Cooke P., Hicks K. Microstructure development of chars derived from high-temperature pyrolysis of barley (Hordeum vulgare L.) hulls. Fuel 2007:86(5-6):735-742. doi:10.1016/j.fuel.2006.08.02410.1016/j.fuel.2006.08.024
[84] Alburquerque J. A., Sanchez M. E., Manuel-Barr V. Slow pyrolysis of relevant biomasses in the Mediterranean basin. Part 2. Char characterisation for carbon sequestration and agricultural uses. Journal of Cleaner Production 2016:120:191-197. doi:10.1016/j.jclepro.2014.10.08010.1016/j.jclepro.2014.10.080
[87] Fernandez L. Reduccion de la sinterizacion en la ceniza de biomasa en combustion. Aplicacion al lecho fluidizado burbujeante (in Spanish). Doctoral Thesis. University of Valladolid, 2004.
[89] Di Gianfilippo M., Costa G., Verginelli I., Gavasci R., Lombardi F. Analysis and interpretation of the leaching behaviour of waste thermal treatment bottom ash by batch and column tests. Waste Management 2016:56:216-228. doi:10.1016/j.wasman.2016.07.03410.1016/j.wasman.2016.07.034
[90] Forteza R., Far M., Seguı C., Cerda V. Characterization of bottom ash in municipal solid waste incinerators for its use in road base. Waste Management 2004:24(9):899-909. doi:10.1016/j.wasman.2004.07.00410.1016/j.wasman.2004.07.004
[91] Petkovic G., Engelsen C. J., Haoya A. O., Breedveld G. Environmental impact from the use of recycled materials in road construction: method for decisionmaking in Norway. Resource Conservation and Recycling 2004:42(3):249-264. 10.1016/j.resconrec.2004.04.004
[94] Van der Sloot H. A. Developments in evaluating environmental impact from utilization of bulk inert wastes using laboratory leaching tests and field verification. Waste Management 1996:16(1):65-81. doi:10.1016/S0956-053X(96)00028-110.1016/S0956-053X(96)00028-1
[96] Rosen M. A., Dincer I., Kanoglu M. Role of exergy in increasing efficiency and sustainability and reducing environmental impact. Energy Policy 2008:36(1):128-37. doi:10.1016/j.enpol.2007.09.00610.1016/j.enpol.2007.09.006
[99] Iribarren D., Susmozas A., Petrakopoulou F., Dufour J. Environmental and exergetic evaluation of hydrogen production via lignocellulosic biomass gasification. Journal of Cleaner Production 2014:69:165-175. doi:10.1016/j.jclepro.2014.01.06810.1016/j.jclepro.2014.01.068
[101] Saidur R., Boroumandjazi G., Mekhilef S., Mohammed H. A. A review on exergy analysis of biomass based fuels. Renewable and Sustainable Energy Reviews 2012:16(2):1217-1222. doi:10.1016/j.rser.2011.07.07610.1016/j.rser.2011.07.076
[102] Sreejith C. C., Muraleedharan C., Arun P. Energy and exergy analysis of steam gasification of biomass materials: a comparative study. International Journal of Ambient Energy 2013:34(1):35-52. doi:0.1080/01430750.2012.711085 10.1080/01430750.2012.711085
[103] Parvez A. M., Mujtaba I. M., Wu T. Energy, exergy and environmental analyses of conventional, steam and CO2-enhanced rice straw gasification. Energy 2016:94:579-588. doi:10.1016/j.energy.2015.11.02210.1016/j.energy.2015.11.022
[104] Elsner W., Wysocki M., Niegodajew a P., Borecki R. Experimental and economic study of small-scale CHP installation equipped with downdraft gasifier and internal combustion engine. Applied Energy 2017:202:213-227. doi:10.1016/j.apenergy.2017.05.14810.1016/j.apenergy.2017.05.148
[105] Algieri A., Morrone P. Energetic analysis of biomass-fired ORC systems for micro-scale combined heat and power (CHP) generation. A possible application to the Italian residential sector. Applied Thermal Engineering 2014:71(2):751-759. doi:10.1016/j.applthermaleng.2013.11.02410.1016/j.applthermaleng.2013.11.024
[106] Martelli E., Amaldi E., Consonni S. Numerical optimization of heat recovery steam cycles: mathematical model, two-stage algorithm and applications. Computational Chemical Engineering 2011:35:2799-2823. doi:10.1016/j.compchemeng.2011.04.01510.1016/j.compchemeng.2011.04.015
[107] Sansiribhan S., Rattanathanaophat A., Nuengchaknin C. Feasibility study of potential and economic of rice straw VSPP power plant in Thailand. International Journal of Social, Behavioral, Educational, Economic, Business and Industrial Engineering 2014:8:1539-1541