Have a personal or library account? Click to login
Small Scale Gasification Application and Perspectives in Circular Economy Cover

Small Scale Gasification Application and Perspectives in Circular Economy

Open Access
|Jun 2018

References

  1. [1] Pike W. J. Another answer. World Oil 2017:6:13.
  2. [2] World Bank. What a Waste. March, 2012
  3. [3] Hogland M., Berg B., Hogland W., Marques M. Planning of and economic constrains related to a landfill mining project in Norway. Presented at Proceedings of the 12th International Waste Management and Landfill Symposium Sardinia, 2009.
  4. [4] Bosmans A., Helsen L. Energy from waste: review of thermochemical Technologies for refuse derived fuel (RDF) treatment. Presented at Third International Symposium on Energy from Biomass and Waste in Venice, 2010.
  5. [5] Burlakovs J., Kriipsalu M., Arina D., Kaczala F., Shmarin S., Denafas G., Hogland W. Former dump sites and the landfill mining perspectives in Baltic countries and Sweden: The status. Proceedings of the 13th SGEM GeoConference on Science and Technologies in Geology, Exploration and Mining 2013:1:485-492.10.5593/SGEM2013/BA1.V1/S03.035
  6. [6] Hogland W. Remediation of an old landsfill site: Soil analysis, leachate quality and gas production. Environmental Science and Pollution Research International 2002:1:49-54. 10.1007/BF02987426
  7. [7] Hogland M., Hogland W., Marques M. Enhanced Landfill Mining: Material recovery, energy utilisation and economics in the EU (Directive) perspective. Presented at International Academic Symposium on Enhanced Landfill Mining, 2010.
  8. [8] Jannelli E., Minutillo M. Simulation of the flue gas cleaning system of an RDF incineration power plant. Waste Management 2007:27:684-690. doi:10.1016/j.wasman.2006.03.017 10.1016/j.wasman.2006.03.017
  9. [9] Belgiorno V., De Feo G., Della Rocca C., Napoli R. M. A. Energy from gasification of solid wastes. Waste Management 2003:23:1-15. doi:10.1016/S0956-053X(02)00149-6 10.1016/S0956-053X(02)00149-6
  10. [10] Castaldi M. J., Themelis N. J. The case for increasing the global capacity for Waste to Energy (WTE). Waste and Biomass Valorization 2010:1:91-105. doi:10.1007/s12649-010-9010-1 10.1007/s12649-010-9010-1
  11. [11] Giugliano M., Grosso M., Rigamonti L. Energy recovery from municipal waste: A case study for a middle-sized Italian district. Waste Management 2008:28(1):39-50. doi:10.1016/j.wasman.2006.12.018 10.1016/j.wasman.2006.12.018
  12. [12] Polettini A. State of the knowledge and research needs in bottom ash management. Presented at Twelfth International Waste Management and Landfill Symposium, S. Margherita di Pula, Cagliari, Italy, 2009.
  13. [13] Dijkstra J. J., van der Sloot H. A., Comans R. N. J. Process identification and model development of contaminant transport in MSWI bottom ash. Waste Management 2002:22(2):531-541. 10.1016/S0956-053X(01)00034-4
  14. [14] Kosson D. S., van der Sloot H. A., Sanchez F., Garrabrants A. C. An integrated framework for evaluating leaching in waste management and utilization of secondary materials. Environmental Engineering Science 2002:19:159-204. doi:10.1089/109287502760079188 10.1089/109287502760079188
  15. [15] Ecke H., Aberg A. Quantification of the effects of environmental leaching factors on emissions from bottom ash in road construction. Science of the Total Environment 2006:362:42-49. doi:10.1016/j.scitotenv.2005.09.057 10.1016/j.scitotenv.2005.09.057
  16. [16] Chang N., Wang H. P., Huang W. L., Lin K. S. The assessment of reuse potential for municipal solid waste and refuse-derived fuel incineration ashes. Resource Conservation and. Recycling 1999:25:255-270. 10.1016/S0921-3449(98)00066-4
  17. [17] Onori R., Polettini A., Pomi R. Mechanical properties and leaching modeling of activated incinerator bottom ash in Portland cement blends. Waste Management 2011:31(2):298-310. doi:10.1016/j.wasman.2010.05.021 10.1016/j.wasman.2010.05.021
  18. [18] Travar I., Lidelow S., Andreas L., Tham G., Lagerkvist A. Assessing the environmental impact of ashes used in a landfill cover construction. Waste Management 2011:29(4):1336-1346. doi:10.1016/j.wasman.2008.09.009 10.1016/j.wasman.2008.09.009
  19. [19] Baciocch R., Cost G., Lategan E., Marini C., Polettini A., Pomi R., Postorino P., Rocca S. Accelerated carbonation of different size fractions of bottom ash from RDF incineration. Waste Management 2010:30(7):1310-1317. doi:10.1016/j.wasman.2009.11.027 10.1016/j.wasman.2009.11.027
  20. [20] Sivula L., Ilander A., Vaisanen A., Rintala J. Weathering of gasification and grate bottom ash in anaerobic conditions. Journal of Hazardous Materials 2010:174(1-3):344-351. doi:10.1016/j.jhazmat.2009.09.056 10.1016/j.jhazmat.2009.09.056
  21. [21] Gori M., Piffer, L., Sirini P. Leaching behaviour of bottom ash from RDF high-temperature gasification plants. Waste Management 2011:31:1514-1521. doi:10.1016/j.wasman.2011.03.009 10.1016/j.wasman.2011.03.009
  22. [22] Hogland M., Arina D., Kriipsalu M., Jani Y., Kaczala F., Salomao A. L., Orupold K., Pehme K. M., Rudovica V., Denafas G., Burlakovs J., Vincevica-Gaile Z., Hogland W. Remarks on four novel landfill mining case studies in Estonia and Sweden. Journal of Material Cycles and Waste Management 2018:20(2):1355-1363. doi:10.1007/s10163-017-0683-4 10.1007/s10163-017-0683-4
  23. [23] McKendry P. Energy production from biomass (part 3): Gasification Technologies. Bioresource Technology 2002:83(1):55-63. doi:10.1016/S0960-8524(01)00120-1 10.1016/S0960-8524(01)00120-1
  24. [24] Basu P. Biomass gasification and pyrolysis. New York: Elsevier; 2010.
  25. [25] De Souza-Santos M. L. Solid fuels combustion and gasification, 2nd ed. USA: CRC Press, 2010. 10.1201/9781420047509
  26. [26] Hla S. S., Roberts D. G., Harris D. J. A numerical model for understanding the behaviour of coals in an entrained-flow gasifier. Fuel Processing Technology 2015:134:424-440. doi:10.1016/j.fuproc.2014.12.053 10.1016/j.fuproc.2014.12.053
  27. [27] Knoef H. A. M. Inventory of biomass gasifier manufacturers and installations. Final Report to European Commission. Enschede: University of Twente, 2000.
  28. [28] Bridgwater A. V. The Future for biomass pyrolysis and gasification: status, opportunities and policies for Europe. Ashton University, 2002.
  29. [29] La Villetta M., Costab M., Massarotti N. Modelling approaches to biomass gasification: A review with emphasis on the stoichiometric method. Renewable and Sustainable Energy Reviews 2017:74:71-88. doi:10.1016/j.rser.2017.02.027 10.1016/j.rser.2017.02.027
  30. [30] Arena U. Process and technological aspects of municipal solid waste gasification. A review. Waste Management 2012:32:625-639. doi:10.1016/j.wasman.2011.09.025 10.1016/j.wasman.2011.09.025
  31. [31] Worrell W. A., Vesilind P. A. Solid Waste Engineering. 2th Edition. Stamford: Cengage Learning, 2012.
  32. [32] Ciferno J. P., Marano J. J. Benchmarking Biomass Gasification Technologies for Fuels, Chemicals and Hydrogen Production. Prepared for U.S. Pittsburgh: Department of Energy, 2002.
  33. [33] Franco C., Pinto F., Gulyurtlu I., Cabrita I. The study of reactions influencing the biomass steam gasification process. Fuel 2003: 82: 835-842. doi:10.1016/S0016-2361(02)00313-7 10.1016/S0016-2361(02)00313-7
  34. [34] Phillips J. Different types of gasifiers and their integration with gas turbines. The Gas Turbine Handbook. Morgantown: National Energy Technology Laboratory, 2006.
  35. [35] Richardson Y., Blin J., Julbe A. A short overview on purification and conditioning of syngas produced by biomass gasification: catalytic strategies, process intensification and new concepts. Progress in Energy and Combustion Science 2012:38(6):765-781. doi:10.1016/j.pecs.2011.12.001 10.1016/j.pecs.2011.12.001
  36. [36] Nand S., Mohammad J., Reddy S. N., Kozinski J. A., Dalai A. K. Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Conversion and Biorefining 2014:4(2):157-191. doi:10.1016/j.pecs.2011.12.001 10.1016/j.pecs.2011.12.001
  37. [37] Subramani V., Gangwal S. K. A review of recent literature to search for an efficient catalytic. Process for the conversion of syngas to ethanol. Energy Fuels 2008:22(2):814-839. doi:10.1021/ef700411x 10.1021/ef700411x
  38. [38] Griffin D. W., Schultz M. A. Fuel and chemical products from biomass syngas: a comparison of gas fermentation to thermochemical conversion routes. Environmental Progress and Sustainable Energy 2012:31(2):219-224. doi:10.1002/ep.11613 10.1002/ep.11613
  39. [39] Craig K. R., Mann M. K. Cost and performance analysis of biomass-based integrated gasification combined-cycle (BIGCC) power systems. NREL/TP-430-21657. Golden: National Renewable Energy Laboratory, 1996. 10.2172/419974
  40. [40] Nickerson T. A., Hathaway B. J., Smith T. M., Davidson J. H. Economic assessment of solar and conventional biomass gasification technologies: Financial and policy implications under feedstock and product gas price uncertainty. Biomass and Bioenergy 2015:74:47-57. doi:10.1016/j.biombioe.2015.01.002 10.1016/j.biombioe.2015.01.002
  41. [41] Bridgwater A. V. Renewable fuels and chemicals by thermal processing of biomass. Chemical Engineering Journal 2003:91(2-3):87-102. doi:10.1016/S1385-8947(02)00142-0 10.1016/S1385-8947(02)00142-0
  42. [42] Buragohain B., Mahanta P., Moholkar V. S. Biomass gasification for decentralized power generation:the Indian perspective. Renewable and Sustainable Energy Reviews 2010:14:73-92. doi:10.1016/j.rser.2009.07.034 10.1016/j.rser.2009.07.034
  43. [43] Tapas K. P., Pratik N. Sheth N. Biomass gasification models for downdraft gasifier: A state-of-the-art review. Renewable and Sustainable Energy Reviews 2015:50:583-593. doi:10.1016/j.rser.2015.05.012 10.1016/j.rser.2015.05.012
  44. [44] Salaices E. Catalytic steam gasification of biomass surrogates: a thermodynamic and kinetic approach. The University of Western Ontario, 2010.
  45. [45] Huber G. W., Iborra S., Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chemical Reviews 2006:106:4044-4098. doi:10.1021/cr068360d 10.1021/cr068360d
  46. [46] Dhepe P. L., Fukuoka A. Cellulose conversion under heterogeneous catalysis. ChemSusChem 2008:1:969-975. doi:10.1002/cssc.200800129 10.1002/cssc.200800129
  47. [47] Klimantos P., Koukouzas N., Katsiadakis A., Kakaras E. Air-blown biomass gasification combined cycles (BGCC): system analysis and economic assessment. Energy 2009:34(5):708-714. doi:10.1016/j.energy.2008.04.009 10.1016/j.energy.2008.04.009
  48. [48] Chaiwat W., Hasegawa I., Mae K. Examination of the low-temperature region in a downdraft gasifier for the pyrolysis product analysis of biomass air gasification. Industrial Engineering and Chemistry Research 2009:48:8934-8943. 10.1021/ie900264n
  49. [49] Sheth P. N., Babu B. V. Experimental studies on producer gas generation from wood waste in a down draft biomass gasifier. Bioresource Technology 2009:100(3):127-133. doi:10.1016/j.biortech.2009.01.024 10.1016/j.biortech.2009.01.024
  50. [50] Khan A. A., de Jong W., Jansens P. J., Spliethoff H. Biomass combustion in fluidized bed boilers: potential problems and remedies. Fuel Processing Technology 2009:90:21-50. doi:10.1016/j.fuproc.2008.07.012 10.1016/j.fuproc.2008.07.012
  51. [51] Warnecke R. Gasification of biomass:comparison of fixed bed and fluidized bed gasifier. Biomass and Bioenergy 2000:18:489-497. doi:10.1016/S0961-9534(00)00009-X 10.1016/S0961-9534(00)00009-X
  52. [52] Demirbas A. Trace element concentrations in ashes from various types of lichen biomass species. Energy Sources 2004:26:499-506. doi:10.1080/00908310490429687 10.1080/00908310490429687
  53. [53] Chan F. L., Tanksale A. Review of recent developments in Ni-based catalysts for biomass gasification. Renewable and Sustainable Energy Reviews 2014:38:428-438. doi:10.1016/j.rser.2014.06.011 10.1016/j.rser.2014.06.011
  54. [54] Sutton D., Kelleher B., Ross J. R. H. Review of literature on catalysts for biomass gasification, Fuel Processing Technology 2001:73(3):155-173. doi:10.1016/S0378-3820(01)00208-9 10.1016/S0378-3820(01)00208-9
  55. [55] Devi L., Ptasinski K. J., Janssen F. J. J. G. A review of the primary measures for tar elimination in biomass gasification processes. Biomass Bioenergy 2003:24:125-140. doi:10.1016/S0961-9534(02)00102-2 10.1016/S0961-9534(02)00102-2
  56. [56] Rehling B., Hofbauer H., Rauch R., Tremmel H., Aichernig C., Schildhauer T. Bio-SNG-first results of the 1MW pilot and demonstration unit at Güssing, 2009.
  57. [57] Hermana A. P., Yusupa S., Shahbaza M., Patricka S. O., Khan Z., Yusup S., Ahmad M. M., Rashidi N. A. Integrated catalytic adsorption (ICA) steam gasification system for enhanced hydrogen production using palm kernel shell. International Journal of Hydrogen Energy 2014:39:3286-3293. doi:10.1016/j.enconman.2014.03.024 10.1016/j.enconman.2014.03.024
  58. [58] Summary of Qualifications. Westinghouse Plasma Gasification Technology. Madison: Westinghouse Plasma Corporation, 2014.
  59. [59] Wiedinmyer C., Yokelson R. J., Gullet B. K. Global emissions of trace gases, particulate matter, and hazardous air pollutants from open burning of domestic waste. Environmental Science and Technology 2014:48(16):9523-9530. doi:10.1021/es502250z 10.1021/es502250z
  60. [60] Smith L., Sengupta D., Takkellapati S., Lee. C. C. An industrial ecology approach to municipal solid wastemanagement: II. Case studies for recovering energy from the organicfraction of MSW. Resources, Conservation and Recycling 2015:104:317-326. doi:10.1016/j.resconrec.2015.05.016 10.1016/j.resconrec.2015.05.016
  61. [61] BP Statistical review of world energy. London: Pureprint Group Ltd, 2013.
  62. [62] European Enhanced Landfill Mining Consortium [Online]. [Accessed: 10.09.2017] Available: https://www.eurelco.org/
  63. [63] Higman C., van der Burgt M. Gasification, 2th Edition. Houston: Gulf Professional Publishing, 2008.
  64. [64] Brown R. C., Biomass refineries based on hybrid thermochemical-biological processing an overview. Biorefineries - Industrial Processes and Products: Status Quo and Future Directions. Weinheim: Wiley-VCH Verlag GmbH & Co.KG, 2006. 10.1002/9783527619849.ch11
  65. [65] Milne T. A., Elam C. C., Evans R. J. Hydrogen from biomass. State of the art and research challenges. IEA/H2/TR-02/001. Golden: National Renewable Energy Laboratory, 2002. 10.2172/792221
  66. [66] Sims R., Taylor M., Saddler J., Mabee W. From 1st- to 2nd-generation biofuel technologies. An overview of current industry and RD&D activities. International Energy Agency, 2008.
  67. [67] Gil J. El problema de los alquitranes en la gasificaci on de biomasa, Infopower (in Spanish). Actual. Tecnol. Prod. uso Efic. energía 2005:79:88-94.
  68. [68] Milne T. A., Evans R. J., Abatzoglou N. Biomass gasifier “tars”: their nature, formation, and conversion. NREL/TP-570-25357. Golden: National Renewable Energy Laboratory, 1998. 10.2172/3726
  69. [69] Li C., Suzuki K. Tar property, analysis, reforming mechanism and model for biomass gasification-An overview. Renewable and Sustainable Energy Review 2009:13(3):594-604. doi:10.1016/j.rser.2008.01.009 10.1016/j.rser.2008.01.009
  70. [70] Reed T. B., Das A., Handbook of biomass downdraft gasifier engine systems. Washington: U.S. Government Printing Office, 1988. 10.2172/5206099
  71. [71] Hindsgaul C., Schramm J., Gratz L., Henriksen U., Bentzen J. Physical and chemical characterization of particles in producer gas from wood chips. Bioresource Technology 2000:73:147-155. doi:10.1016/S0960-8524(99)00153-4 10.1016/S0960-8524(99)00153-4
  72. [72] Fitzpatrick E. M., Bartle K. D., Kubacki M. L., Jones J. M., Pourkashanian M., Ross A. B. The mechanism of the formation of gasification particles and other pollutants during the co-firing of coal and pinewood in a fixed bed combustor. Fuel 2009:88 (12):2409-2417. doi:10.1016/j.fuel.2009.02.037 10.1016/j.fuel.2009.02.037
  73. [73] Kozinski J. A., Saade R. Effect of biomass burning on the formation of gasification particles and heavy hydrocarbons. Fuel 1998:77(4):225-231. doi:10.1016/S0016-2361(97)00201-9 10.1016/S0016-2361(97)00201-9
  74. [74] Turn S. Q., Kinoshita C. M., Ishimura D. M., Zhou J. The fate of inorganic constituents of biomass in fluidized bed gasification. Fuel 1998:77(3):35-146. doi:10.1016/S0016-2361(97)00190-7 10.1016/S0016-2361(97)00190-7
  75. [75] Tammeorg P., Bastos A., Jeffery S., Rees F., Juergen K., Graber E., Ventura M., Kibblewhite M., Amaro A., Budai A., Cordovil C., Domene X., Gardi C., Gasco G., Horak J., Kammann C., Kondrlova E., Laird D., Loureiro S., Martins M. Biochars in soils: towards the required level of scientific understanding. Journal of Environmental Engineering and Landscape Management 2016:25(2):192-207. doi:10.3846/16486897.2016.1239582 10.3846/16486897.2016.1239582
  76. [76] Komkiene J., Baltrenaite E. Biochar as adsorbent for removal of heavy metal ions (cadmium(II), copper(II), lead(II), zinc(II)) from aqueous phase. International Journal of Environmental Science and Technology 2016:13(2):471-482. doi:10.1007/s13762-015-0873-3 10.1007/s13762-015-0873-3
  77. [77] Hilber I., Bastos A., Loureiro S., Soja G., Marsz A., Cornelissen G., Bucheli T. The different faces of biochar: contamination risk versus remediation tool. Journal of Environmental Engineering and Landscape Management 2017:86-104. doi:10.3846/16486897.2016.1254089 10.3846/16486897.2016.1254089
  78. [78] Hafshejani L. D., Hooshmand A., Naseri A. A., Mohammadi A. S., Abbasi F., Bhatnagar A. Removal of nitrate from aqueous solution by modified sugarcane bagasse biochar. Ecological Engineering 2016:95:101-111. doi:10.1016/j.ecoleng.2016.06.035 10.1016/j.ecoleng.2016.06.035
  79. [79] Verheijen F., Mankasingh U., Penizek V., Panzacchi P., Glaser B., Jeffery S., Bastos A., Tammeorg P., Kern J., Zavalloni C., Zanchettin G., Sakrabani R. Representativeness of European biochar research: part I-field experiments. Journal of Environmental Engineering and Landscape Management 2017:25(2):140-151. doi:10.3846/16486897.2017.1304943 10.3846/16486897.2017.1304943
  80. [80] Baltrenaite E., Baltrenas P., Bhatnagar A., Vilppo T., Selenius M., Koistinen A., Dahl M. Penttinen O. P. A multicomponent approach to using waste-derived biochar in biofiltration: A case study based on dissimilar types of waste. International Biodeterioration & Biodegradation 2016:119:565-576. doi:10.1016/j.ibiod.2016.10.056 10.1016/j.ibiod.2016.10.056
  81. [81] Galhetas M., Lopes H., Freire M., Abelha P., Pinto F., Gulyurtlu I. Characterization, leachability and valorization through combustion of residual chars from gasification of coals with pine. Waste Management 2012:32:769-779. 10.1016/j.wasman.2011.08.021
  82. [82] Garcia-Garcia A., Gregorio A., Franco C., Pinto F., Boavida D., Gulyurtlu I. Unconverted chars obtained during biomass gasification on a pilot-scale gasifier as a source of activated carbon production. Bioresource Technology 2003:88(1):27-32. doi:10.1016/S0960-8524(02)00266-3 10.1016/S0960-8524(02)00266-3
  83. [83] Boateng A., Cooke P., Hicks K. Microstructure development of chars derived from high-temperature pyrolysis of barley (Hordeum vulgare L.) hulls. Fuel 2007:86(5-6):735-742. doi:10.1016/j.fuel.2006.08.024 10.1016/j.fuel.2006.08.024
  84. [84] Alburquerque J. A., Sanchez M. E., Manuel-Barr V. Slow pyrolysis of relevant biomasses in the Mediterranean basin. Part 2. Char characterisation for carbon sequestration and agricultural uses. Journal of Cleaner Production 2016:120:191-197. doi:10.1016/j.jclepro.2014.10.080 10.1016/j.jclepro.2014.10.080
  85. [85] Abu El-Rub Z., Bramer E. A., Brem G. Experimental comparison of biomass chars with other catalysts for tar reduction. Fuel 2008:87:2243-2252. doi:10.1016/j.fuel.2008.01.004 10.1016/j.fuel.2008.01.004
  86. [86] Byrne J. F., Marsh H. Introductory overview. Porosity in Carbons: Characterization and Applications. London: Edward Arnold, 1995.
  87. [87] Fernandez L. Reduccion de la sinterizacion en la ceniza de biomasa en combustion. Aplicacion al lecho fluidizado burbujeante (in Spanish). Doctoral Thesis. University of Valladolid, 2004.
  88. [88] Hernandez J. J., Ballesteros R., Aranda G. Characterisation of tars from biomass gasification: effect of the operating conditions. Energy 2013:50:333-342. doi:10.1016/j.energy.2012.12.005 10.1016/j.energy.2012.12.005
  89. [89] Di Gianfilippo M., Costa G., Verginelli I., Gavasci R., Lombardi F. Analysis and interpretation of the leaching behaviour of waste thermal treatment bottom ash by batch and column tests. Waste Management 2016:56:216-228. doi:10.1016/j.wasman.2016.07.034 10.1016/j.wasman.2016.07.034
  90. [90] Forteza R., Far M., Seguı C., Cerda V. Characterization of bottom ash in municipal solid waste incinerators for its use in road base. Waste Management 2004:24(9):899-909. doi:10.1016/j.wasman.2004.07.004 10.1016/j.wasman.2004.07.004
  91. [91] Petkovic G., Engelsen C. J., Haoya A. O., Breedveld G. Environmental impact from the use of recycled materials in road construction: method for decisionmaking in Norway. Resource Conservation and Recycling 2004:42(3):249-264. 10.1016/j.resconrec.2004.04.004
  92. [92] Das B., Prakash S., Reddy P. S. R., Misra V. N. An overview of utilization of slag and sludge from steel industries. Resource Conservation and Recycling 2007:50(1):40-57. doi:10.1016/j.resconrec.2006.05.008 10.1016/j.resconrec.2006.05.008
  93. [93] Huang Y., Bird R.N., Heidrich O. A review of the use of recycled solid waste materials in asphalt pavements. Resource Conservation and Recycling 2007:52(1):58-73. doi:10.1016/j.resconrec.2007.02.002 10.1016/j.resconrec.2007.02.002
  94. [94] Van der Sloot H. A. Developments in evaluating environmental impact from utilization of bulk inert wastes using laboratory leaching tests and field verification. Waste Management 1996:16(1):65-81. doi:10.1016/S0956-053X(96)00028-1 10.1016/S0956-053X(96)00028-1
  95. [95] Dincer I. Exergy as a potential tool for sustainable drying systems. Sustainable Cities and Society 2011:1(2):91-96. doi:10.1016/j.scs.2011.04.001 10.1016/j.scs.2011.04.001
  96. [96] Rosen M. A., Dincer I., Kanoglu M. Role of exergy in increasing efficiency and sustainability and reducing environmental impact. Energy Policy 2008:36(1):128-37. doi:10.1016/j.enpol.2007.09.006 10.1016/j.enpol.2007.09.006
  97. [97] Sciubba E., Wall G. A brief commented history of exergy from the beginnings to 2004. International Journal of Thermodynamics 2007:10(1):1-26.
  98. [98] Asprion N., Rumpf B., Gritsch A. Work flow in process development for energy efficient processes. Applied Thermal Engineering 2011:31(13):2067-2072. doi:10.1016/j.applthermaleng.2010.11.028 10.1016/j.applthermaleng.2010.11.028
  99. [99] Iribarren D., Susmozas A., Petrakopoulou F., Dufour J. Environmental and exergetic evaluation of hydrogen production via lignocellulosic biomass gasification. Journal of Cleaner Production 2014:69:165-175. doi:10.1016/j.jclepro.2014.01.068 10.1016/j.jclepro.2014.01.068
  100. [100] Ptasinski K. J., Prins M. J., Pierik A. Exergetic evaluation of biomass gasification. Energy 2007:32(4):568-574. doi:10.1016/j.energy.2006.06.024 10.1016/j.energy.2006.06.024
  101. [101] Saidur R., Boroumandjazi G., Mekhilef S., Mohammed H. A. A review on exergy analysis of biomass based fuels. Renewable and Sustainable Energy Reviews 2012:16(2):1217-1222. doi:10.1016/j.rser.2011.07.076 10.1016/j.rser.2011.07.076
  102. [102] Sreejith C. C., Muraleedharan C., Arun P. Energy and exergy analysis of steam gasification of biomass materials: a comparative study. International Journal of Ambient Energy 2013:34(1):35-52. doi:0.1080/01430750.2012.711085 10.1080/01430750.2012.711085
  103. [103] Parvez A. M., Mujtaba I. M., Wu T. Energy, exergy and environmental analyses of conventional, steam and CO2-enhanced rice straw gasification. Energy 2016:94:579-588. doi:10.1016/j.energy.2015.11.022 10.1016/j.energy.2015.11.022
  104. [104] Elsner W., Wysocki M., Niegodajew a P., Borecki R. Experimental and economic study of small-scale CHP installation equipped with downdraft gasifier and internal combustion engine. Applied Energy 2017:202:213-227. doi:10.1016/j.apenergy.2017.05.148 10.1016/j.apenergy.2017.05.148
  105. [105] Algieri A., Morrone P. Energetic analysis of biomass-fired ORC systems for micro-scale combined heat and power (CHP) generation. A possible application to the Italian residential sector. Applied Thermal Engineering 2014:71(2):751-759. doi:10.1016/j.applthermaleng.2013.11.024 10.1016/j.applthermaleng.2013.11.024
  106. [106] Martelli E., Amaldi E., Consonni S. Numerical optimization of heat recovery steam cycles: mathematical model, two-stage algorithm and applications. Computational Chemical Engineering 2011:35:2799-2823. doi:10.1016/j.compchemeng.2011.04.015 10.1016/j.compchemeng.2011.04.015
  107. [107] Sansiribhan S., Rattanathanaophat A., Nuengchaknin C. Feasibility study of potential and economic of rice straw VSPP power plant in Thailand. International Journal of Social, Behavioral, Educational, Economic, Business and Industrial Engineering 2014:8:1539-1541
DOI: https://doi.org/10.2478/rtuect-2018-0003 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 42 - 54
Published on: Jun 6, 2018
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2018 Maris Klavins, Valdis Bisters, Juris Burlakovs, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.