1. Nehrin, R. Traversing the mountaintop: world fossil fuel production to 2050. Philosophical transactions of the Royal Society. Biological sciences, 2009, No. 364 (1532), pp. 3067-3079.
3. Demirbas, A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion and Management, 2001, No. 24, pp. 1357-1378. http://dx.doi.org/10.1016/S0196-8904(00)00137-010.1016/S0196-8904(00)00137-0
4. Alam, F., Date, A., Rasjidin, R., Mobin, S., Moria, D., Baqui, A. Biofuel from algae - Is it a viable option? Procedia Engineering, 2012, No. 49, pp. 221-227.10.1016/j.proeng.2012.10.131
5. Alvadar-Morales, M., Boldrin, A., Karakashev, B., Holdt, S. L., Angelidaki, I., Astrup, T. Life cycle assessment of biofuel production from brown seaweed in Nordic conditions. Bioresource Technology, 2013, No. 129, pp. 92-99. http://dx.doi.org/10.1016/j.biortech.2012.11.02910.1016/j.biortech.2012.11.02923238340
6. Debowski, M., Zielinski, M., Grala, A., Dudek, M. Algae biomass as an alternative substrate in biogas production technologies - Review. Renewable and Sustainable Energy Reviews, 2013, No. 27, pp. 596-604. http://dx.doi.org/10.1016/j.rser.2013.07.02910.1016/j.rser.2013.07.029
7. Singh, A., Olsen, S. I. A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Applied Energy, 2011, No. 88, pp. 3548-3555. http://dx.doi.org/10.1016/j.apenergy.2010.12.01210.1016/j.apenergy.2010.12.012
8. Bruton, T., Lyons, H., Lerat, Y., Stanley, M., Rasmussen, M. B. A review of the potential of marine algae as a source of biofuel in Ireland. Dublin. Ireland: Sustainable Energy Ireland, 2009.
12. Zamalloa, C., Vulsteke, E., Albrecht, J., Verstraete, W. The technoeconomic potential of renewable energy through the anaerobic digestion of microalgae. Bioresource Technology, 2011, No. 102, pp. 1149-1158. http://dx.doi.org/10.1016/j.biortech.2010.09.01710.1016/j.biortech.2010.09.01720933389
13. Lundquist, T. J., Woertz, I. C., Quinn, N. W. T., Benemann, J. R. A realistic Technology and Engineering assessment of algae biofuel production. USA: Energy Biosciences Institute, 2010.
14. Resurreccion, E., Colosi, L., White, M., Clarens, A. Comparison of algae cultivation methods for bioenergy production using a combined life cycle assessment and life cycle costing approach. Bioresource Technology, 2012.No. 126, pp. 298-306. http://dx.doi.org/10.1016/j.biortech.2012.09.03810.1016/j.biortech.2012.09.03823117186
15. Richardson, J. W., Johnson, M. D., Outlaw, J. L. Economical comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the Southwest. Algal Research, 2012, No. 1, pp. 93-100.10.1016/j.algal.2012.04.001
16. Slade, R., Bauen, A. Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. Biomass and Bioenergy, 2013, No. 53, pp. 29-38. http://dx.doi.org/10.1016/j.biombioe.2012.12.01910.1016/j.biombioe.2012.12.019
17. Demirbas, A. Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Conversion and Management, 2000, No. 41 (6), pp. 633-646.10.1016/S0196-8904(99)00130-2
18. Demirbas, A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion and Management, 2001, No. 24, pp. 1357-1378. http://dx.doi.org/10.1016/S0196-8904(00)00137-010.1016/S0196-8904(00)00137-0
19. Dragone, G., Fernandes, B., Vicente, A. A., Teixeira, J. A. Third generation biofuels from microalgae. Communicating Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, 2010, No. 2, pp. 1355-1366.
20. Bahadar, A., Khan, M. B. Progress in energy from microalgae: A review. Renewable and Sustainable Energy Reviews, 2013, No. 27, pp. 128-148. http://dx.doi.org/10.1016/j.rser.2013.06.02910.1016/j.rser.2013.06.029
27. Gül, T. Integrated Analysis of Hybrid Systems for Rural Electrification in Developing Countries. M.Sc. Thesis. RIT Division of Land and Water and Water Resources Engineering, Stockholm, Sweden. 2004, p. 117.
29. Tzeng, G. H., Huang, J. J. Multiple Attribute Decision Making: Methods and Applications. United States of America: Taylor & Francis, Boca Raton, 2011.10.1201/b11032
30. Körth, H. Zur Berücksichtigung mehrere Zielfunktionen bei der Optimierung von Produktions planen. Mathematik und Wirtschaft, 1969, No. 6, pp. 184-201.
31. Pubule, J., Blumberga, A., Romagnoli, F., Blumberga, D. Finding an optimal solution for biowaste management in the Baltic States. In press, Journal of Cleaner Production, 2014. Available online on May 2014.10.1016/j.jclepro.2014.04.053
32. Dong, J., Chi, Y., Zou, D., Fu, C., Huang, Q., Ni, M. Energy environment economy assessment of waste management systems from a life cycle perspective: model development and case study. Applied Energy, 2014, No. 114, pp. 400-408. http://dx.doi.org/10.1016/j.apenergy.2013.09.03710.1016/j.apenergy.2013.09.037
36. Rodríguez R., Ruyck J. D., Díaz P. R., Verma V. K., Bram S. An LCA based indicator for evaluation of alternative energy routes. Applied Energy, 2011, No. 88(3), pp. 630-635.10.1016/j.apenergy.2010.08.013
37. Frischknecht, R., Jungbluth, N., Althaus, H.J., Doka, G., Dones, R., Hischier, R., Hellweg, S., Humbert, S., Margni, M., Nemecek, T., Spielmann, M. Implementation of Life Cycle Impact Assessment Methods: Data v2.0. ecoinvent report No. 3. Switzerland: Swiss center for Life Cycle Inventories, 2007.
41. Jolliet, O., Margni, M., Charles, R., Humbert, S., Payet, J., Rebitzer, G., Rosenbaum, R. IMPACT 2002+: A New Life Cycle Impact Assessment Methodology. USA: Ecomed publishers, 2003.
43. Van Iersel, S., Gamba, L., Rossi, A., Alberci, S., Dehue, B., Van de Staaij, J., Flammini, A. Algae-based biofuels: A review of challenges and opportunities for developing countries. Italy: Food and agriculture Organization of the Unites Nations, 2009.
45. Bruhn, A., Dahl, J., Nielsen, H. B., et. al. Bioenergy potential of Ulva lactuca: Biomass yield methane production and combustion. Bioresource Technology, 2011, No. 102, pp. 2595-2604. http://dx.doi.org/10.1016/j.biortech.2010.10.01010.1016/j.biortech.2010.10.010
46. Surendra, K. C., Takara, D., Hashimote, A. G., et. al. Biogas as a sustainable energy source for developing countries: Opportunities and challenges. Renewable and Sustainable Energy Reviews, 2012, No. 31, pp. 846-859.10.1016/j.rser.2013.12.015
48. Frost, P., Gilkinson, S. 27 months performance summary for anaerobic digestion of dairy cow slurry at AFBI Hillsborough. Interim Technical report. USA: Agri-Food and Biosciences Institue, 2011. p. 13.
49. Aresta, M., Dibendetto, A., Barberio, G. Utilization of macro-algae for enhanced CO2 fixation and biofuels production: Development of a computing software for an LCA study. Fuel Processing Technology, 2005, No. 86, pp. 1679-1693. http://dx.doi.org/10.1016/j.fuproc.2005.01.01610.1016/j.fuproc.2005.01.016
50. Tredici, M. R. Energy balance of microalgae cultures in photobioreactors and ponds. The energy balance and the NER, calculated on real number as at the base of a sound LCA of algal biofules. Italy: EU workshop, Life Cycle Analysis of Algal Based Biofuels, 2012. p. 38.
51. Biogas composition from different sources [Online] [Accessed: 13 March 2014]. Available: http://www.biogas-renewable-energy.info/ biogas_ composition.html
52. Selehion, A. R., Minael, S., Razavi, S. J. Design and performance evaluation of screw press separator for separating dairy cattle manure. International Journal of Agronomy and Plant Production, 2013, No. 4, pp. 3849-3858.
53. Cuellar, A. D., Webber, M. E. Cow power: the energy and emissions benefits of converting manure to biogas. Environmnetal Research Letters, 2008, No. 3(3), p. 8.10.1088/1748-9326/3/3/034002
55. Balodis, I., Balodis, O. Winter Oilseed Rape Growing - Experience in Farm „Azaidi. Lauksaimniecības zinātne veiksmīgai saimniekošanai, 2013, No. 21, p. 4.
56. Biogāzes izmantošanas alternatīvu sistēmu efektivitātes un izmaksu salīdzināšanas sociāli-ekonomisko ieguvmu novērtējums. Izpildes tehniskais ziņojums (Biogas use alternative system efficiency and cost comparison for socio-economic gain evaluation. Technical implementation report). Latvia: Enerģija un vide, 2012, p. 20.
57. Dubrovskis, V., Niklass, M., Emsis, I., Kārkliņš, A. Biogāzes ražošana un efektīva izmantošana (Biogas production and efficienct use). Latvia: Latvijas Biogāzes Asociācija, 2013. p. 88.
58. Frank, E. D., Han, J., Palau-Rivera, I., et. al. Methane and nitrous oxide emissions affect the life-cycle analysis of algal biofuels. Environmental Research letters, 2012, No. 7, p. 10.10.1088/1748-9326/7/1/014030
59. Auziņš, J., Januševskis, A. Eksperimentu plānošana un analīze (Experimental planning and analysis). Latvia: Riga Technical University press, 2007. p. 256.
60. Keskinkan, O., Goksu, M. Z. L., Basibuyuk, M., et. al. Heavy metal adsorbtion properties of a submerged aquatic plant (Ceratophyllumdemersum). Bioresource Technology, 2004, No. 92 (2), pp. 197-200.10.1016/j.biortech.2003.07.01114693453
61. Aravind, P., Prasad, M. N. V. Zinc protects chloroplasts and associated photochemical functions in cadmium exposed Cerathophyllumdemersum L., a freshwater macrophyte. Plant Science, 2004, No. 166 (5), pp. 1321-1327.10.1016/j.plantsci.2004.01.011
63. Block, T. A. Rhoads, A. F., Anisko, A. Aquatic Plants of Pennsylvania: A Complete Reference Guide Book. USA: University of Pennsylvania Press, 2011. http://dx.doi.org/10.9783/978081220504610.9783/9780812205046
64. Ha, M. H., Pflugmacher, S. Time-dependentalterations in growth, photosynthetic pigments and enzymatic defense systems of submerged Ceratphyllumdemersum during exposure to the cyanobacterial neurotoxin anatoxin-a. Aquatic toxicology, 2013, No.138, p. 26-34. http://dx.doi.org/10.1016/j.aquatox.2013.04.00710.1016/j.aquatox.2013.04.00723685387
65. METHOD 1684: Total, Fixed, and Volatile Solids in Water, Solids, and Biosolids. Environmental Protection Agency, Office of Water, Office of Science and Technology, Engineering and Analysis Division. USA: US EPA.2001.