Have a personal or library account? Click to login
Sustainable Use Of Macro-Algae For Biogas Production In Latvian Conditions: A Preliminary Study Through An Integrated Mca And Lca Approach Cover

Sustainable Use Of Macro-Algae For Biogas Production In Latvian Conditions: A Preliminary Study Through An Integrated Mca And Lca Approach

Open Access
|Dec 2014

References

  1. 1. Nehrin, R. Traversing the mountaintop: world fossil fuel production to 2050. Philosophical transactions of the Royal Society. Biological sciences, 2009, No. 364 (1532), pp. 3067-3079.
  2. 2. McKendry, P. Energy production from biomass: overview of biomass. Review paper. Bioresource Technology, 2002, No. 83, pp. 37-46. http://dx.doi.org/10.1016/S0960-8524(01)00118-310.1016/S0960-8524(01)00118-3
  3. 3. Demirbas, A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion and Management, 2001, No. 24, pp. 1357-1378. http://dx.doi.org/10.1016/S0196-8904(00)00137-010.1016/S0196-8904(00)00137-0
  4. 4. Alam, F., Date, A., Rasjidin, R., Mobin, S., Moria, D., Baqui, A. Biofuel from algae - Is it a viable option? Procedia Engineering, 2012, No. 49, pp. 221-227.10.1016/j.proeng.2012.10.131
  5. 5. Alvadar-Morales, M., Boldrin, A., Karakashev, B., Holdt, S. L., Angelidaki, I., Astrup, T. Life cycle assessment of biofuel production from brown seaweed in Nordic conditions. Bioresource Technology, 2013, No. 129, pp. 92-99. http://dx.doi.org/10.1016/j.biortech.2012.11.02910.1016/j.biortech.2012.11.02923238340
  6. 6. Debowski, M., Zielinski, M., Grala, A., Dudek, M. Algae biomass as an alternative substrate in biogas production technologies - Review. Renewable and Sustainable Energy Reviews, 2013, No. 27, pp. 596-604. http://dx.doi.org/10.1016/j.rser.2013.07.02910.1016/j.rser.2013.07.029
  7. 7. Singh, A., Olsen, S. I. A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Applied Energy, 2011, No. 88, pp. 3548-3555. http://dx.doi.org/10.1016/j.apenergy.2010.12.01210.1016/j.apenergy.2010.12.012
  8. 8. Bruton, T., Lyons, H., Lerat, Y., Stanley, M., Rasmussen, M. B. A review of the potential of marine algae as a source of biofuel in Ireland. Dublin. Ireland: Sustainable Energy Ireland, 2009.
  9. 9. Wellinger, A. Algal Biomass - Does it save the world? Short reflections. IEA Bioenergy Task 37 report. 2009, p. 13.
  10. 10. Kim, S. K. Handbook of Marine Macroalgae: Biotechnology and Applied Physology. USA: Wiley, 2011.http://dx.doi.org/10.1002/978111997708710.1002/9781119977087
  11. 11. Archer, D., Barber, J. Molecular to global photosynthesis. UK:Imperial College Press, 2004. http://dx.doi.org/10.1142/p21810.1142/p218
  12. 12. Zamalloa, C., Vulsteke, E., Albrecht, J., Verstraete, W. The technoeconomic potential of renewable energy through the anaerobic digestion of microalgae. Bioresource Technology, 2011, No. 102, pp. 1149-1158. http://dx.doi.org/10.1016/j.biortech.2010.09.01710.1016/j.biortech.2010.09.01720933389
  13. 13. Lundquist, T. J., Woertz, I. C., Quinn, N. W. T., Benemann, J. R. A realistic Technology and Engineering assessment of algae biofuel production. USA: Energy Biosciences Institute, 2010.
  14. 14. Resurreccion, E., Colosi, L., White, M., Clarens, A. Comparison of algae cultivation methods for bioenergy production using a combined life cycle assessment and life cycle costing approach. Bioresource Technology, 2012.No. 126, pp. 298-306. http://dx.doi.org/10.1016/j.biortech.2012.09.03810.1016/j.biortech.2012.09.03823117186
  15. 15. Richardson, J. W., Johnson, M. D., Outlaw, J. L. Economical comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the Southwest. Algal Research, 2012, No. 1, pp. 93-100.10.1016/j.algal.2012.04.001
  16. 16. Slade, R., Bauen, A. Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. Biomass and Bioenergy, 2013, No. 53, pp. 29-38. http://dx.doi.org/10.1016/j.biombioe.2012.12.01910.1016/j.biombioe.2012.12.019
  17. 17. Demirbas, A. Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Conversion and Management, 2000, No. 41 (6), pp. 633-646.10.1016/S0196-8904(99)00130-2
  18. 18. Demirbas, A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion and Management, 2001, No. 24, pp. 1357-1378. http://dx.doi.org/10.1016/S0196-8904(00)00137-010.1016/S0196-8904(00)00137-0
  19. 19. Dragone, G., Fernandes, B., Vicente, A. A., Teixeira, J. A. Third generation biofuels from microalgae. Communicating Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, 2010, No. 2, pp. 1355-1366.
  20. 20. Bahadar, A., Khan, M. B. Progress in energy from microalgae: A review. Renewable and Sustainable Energy Reviews, 2013, No. 27, pp. 128-148. http://dx.doi.org/10.1016/j.rser.2013.06.02910.1016/j.rser.2013.06.029
  21. 21. Eroglu, E., Melis, A. Photobiological hydrogen production: Recent advances and state of art. Bioresource Technology, 2011, No. 102, pp. 8403-8413. http://dx.doi.org/10.1016/j.biortech.2011.03.02610.1016/j.biortech.2011.03.02621463932
  22. 22. Environmental policy strategy 2009-2015. Cabinet order 517. Latvijas Vēstnesis 2009, No. 122 (4108), p. 53.
  23. 23. Europe 2020. A strategy for smart, sustainable and inclusive growth. EU: European Commission. 2010.
  24. 24. Kalns, J. [Online] Biogas in Latvia. 2012. [Accessed: 23 January 2014]. Available: http://www.lvportals.lv/likumi-prakse.php?id=251397
  25. 25. Astill, H., Walker, D., Kiliminster, K., et. al. Macrophytes and macroalgae in the Swan-Canning estuary. River Science, 2010, No. 20, pp. 2-12.
  26. 26. Freshwater Ecology: Concepts and Environmental Applications. Dodds W.K. USA: Academy Press, 2002.
  27. 27. Gül, T. Integrated Analysis of Hybrid Systems for Rural Electrification in Developing Countries. M.Sc. Thesis. RIT Division of Land and Water and Water Resources Engineering, Stockholm, Sweden. 2004, p. 117.
  28. 28. Hwang, C. L., Yoon, K. Multiple Attribute Decision Making: Methods and Applications. Springer-Verlag, Heidelbeg, 1981.10.1007/978-3-642-48318-9
  29. 29. Tzeng, G. H., Huang, J. J. Multiple Attribute Decision Making: Methods and Applications. United States of America: Taylor & Francis, Boca Raton, 2011.10.1201/b11032
  30. 30. Körth, H. Zur Berücksichtigung mehrere Zielfunktionen bei der Optimierung von Produktions planen. Mathematik und Wirtschaft, 1969, No. 6, pp. 184-201.
  31. 31. Pubule, J., Blumberga, A., Romagnoli, F., Blumberga, D. Finding an optimal solution for biowaste management in the Baltic States. In press, Journal of Cleaner Production, 2014. Available online on May 2014.10.1016/j.jclepro.2014.04.053
  32. 32. Dong, J., Chi, Y., Zou, D., Fu, C., Huang, Q., Ni, M. Energy environment economy assessment of waste management systems from a life cycle perspective: model development and case study. Applied Energy, 2014, No. 114, pp. 400-408. http://dx.doi.org/10.1016/j.apenergy.2013.09.03710.1016/j.apenergy.2013.09.037
  33. 33. Saaty, T. The analytic hierarchy process. New York: McGraw Hill, 1980.10.21236/ADA214804
  34. 34. ISO. ISO 14040: Environmental management-Life cycle assessment- Principles and Framework. Geneva: ISP copyright office; 1997
  35. 35. ISO 14044: Environmental management. Life cycle assessment- requirement and guidelines. International Organization for Standardization, 2006.
  36. 36. Rodríguez R., Ruyck J. D., Díaz P. R., Verma V. K., Bram S. An LCA based indicator for evaluation of alternative energy routes. Applied Energy, 2011, No. 88(3), pp. 630-635.10.1016/j.apenergy.2010.08.013
  37. 37. Frischknecht, R., Jungbluth, N., Althaus, H.J., Doka, G., Dones, R., Hischier, R., Hellweg, S., Humbert, S., Margni, M., Nemecek, T., Spielmann, M. Implementation of Life Cycle Impact Assessment Methods: Data v2.0. ecoinvent report No. 3. Switzerland: Swiss center for Life Cycle Inventories, 2007.
  38. 38. Goedkoop, M., Oele, M., Leijting, J., Ponsioen, T., Meijer, E. Introduction to LCA with SimaPro. The Netherlands: PRe consultants, 2013.
  39. 39. Goedkoop, M., Oel, M., Schryver, A., Vieira, M. SimaPro Database Manual: Methods Library. The Netherlands: Pre Consultants, 2008.
  40. 40. Humbert, S., Schryver, A., Bengoa, X., Margni, M., Jolliet, O. IMPACT 2002+: User Guide. Draft for version Q2.21. 2012. USA: Quantis press, 2012.
  41. 41. Jolliet, O., Margni, M., Charles, R., Humbert, S., Payet, J., Rebitzer, G., Rosenbaum, R. IMPACT 2002+: A New Life Cycle Impact Assessment Methodology. USA: Ecomed publishers, 2003.
  42. 42. Bruhn, A., Dahl, J., Nielsen, H.B., et. al. Bioenergy potential of Ulva lactuca: Biomass yield methane production and combustion. Bioresource Technology, 2011, No.102, pp. 2595-2604. http://dx.doi.org/10.1016/j.biortech.2010.10.01010.1016/j.biortech.2010.10.01021044839
  43. 43. Van Iersel, S., Gamba, L., Rossi, A., Alberci, S., Dehue, B., Van de Staaij, J., Flammini, A. Algae-based biofuels: A review of challenges and opportunities for developing countries. Italy: Food and agriculture Organization of the Unites Nations, 2009.
  44. 44. Kumar, P. Analysis of CO2 capture using algae. USA: Oilgae, 2010. 24 p.
  45. 45. Bruhn, A., Dahl, J., Nielsen, H. B., et. al. Bioenergy potential of Ulva lactuca: Biomass yield methane production and combustion. Bioresource Technology, 2011, No. 102, pp. 2595-2604. http://dx.doi.org/10.1016/j.biortech.2010.10.01010.1016/j.biortech.2010.10.010
  46. 46. Surendra, K. C., Takara, D., Hashimote, A. G., et. al. Biogas as a sustainable energy source for developing countries: Opportunities and challenges. Renewable and Sustainable Energy Reviews, 2012, No. 31, pp. 846-859.10.1016/j.rser.2013.12.015
  47. 47. Collet, P., Helias, A., Lardon, L., et. al. Life-cycle assessment of microalgae culture coupled to biogas production. Bioresource Technology, 2011, No. 102, pp. 207-214. http://dx.doi.org/10.1016/j.biortech.2010.06.15410.1016/j.biortech.2010.06.15420674343
  48. 48. Frost, P., Gilkinson, S. 27 months performance summary for anaerobic digestion of dairy cow slurry at AFBI Hillsborough. Interim Technical report. USA: Agri-Food and Biosciences Institue, 2011. p. 13.
  49. 49. Aresta, M., Dibendetto, A., Barberio, G. Utilization of macro-algae for enhanced CO2 fixation and biofuels production: Development of a computing software for an LCA study. Fuel Processing Technology, 2005, No. 86, pp. 1679-1693. http://dx.doi.org/10.1016/j.fuproc.2005.01.01610.1016/j.fuproc.2005.01.016
  50. 50. Tredici, M. R. Energy balance of microalgae cultures in photobioreactors and ponds. The energy balance and the NER, calculated on real number as at the base of a sound LCA of algal biofules. Italy: EU workshop, Life Cycle Analysis of Algal Based Biofuels, 2012. p. 38.
  51. 51. Biogas composition from different sources [Online] [Accessed: 13 March 2014]. Available: http://www.biogas-renewable-energy.info/ biogas_ composition.html
  52. 52. Selehion, A. R., Minael, S., Razavi, S. J. Design and performance evaluation of screw press separator for separating dairy cattle manure. International Journal of Agronomy and Plant Production, 2013, No. 4, pp. 3849-3858.
  53. 53. Cuellar, A. D., Webber, M. E. Cow power: the energy and emissions benefits of converting manure to biogas. Environmnetal Research Letters, 2008, No. 3(3), p. 8.10.1088/1748-9326/3/3/034002
  54. 54. Koenig, R. T., Hammac, W. A., Pan, W. L. Canola growth, development and fertility. Fact sheet. USA: Washington state university, 2011, p. 6.
  55. 55. Balodis, I., Balodis, O. Winter Oilseed Rape Growing - Experience in Farm „Azaidi. Lauksaimniecības zinātne veiksmīgai saimniekošanai, 2013, No. 21, p. 4.
  56. 56. Biogāzes izmantošanas alternatīvu sistēmu efektivitātes un izmaksu salīdzināšanas sociāli-ekonomisko ieguvmu novērtējums. Izpildes tehniskais ziņojums (Biogas use alternative system efficiency and cost comparison for socio-economic gain evaluation. Technical implementation report). Latvia: Enerģija un vide, 2012, p. 20.
  57. 57. Dubrovskis, V., Niklass, M., Emsis, I., Kārkliņš, A. Biogāzes ražošana un efektīva izmantošana (Biogas production and efficienct use). Latvia: Latvijas Biogāzes Asociācija, 2013. p. 88.
  58. 58. Frank, E. D., Han, J., Palau-Rivera, I., et. al. Methane and nitrous oxide emissions affect the life-cycle analysis of algal biofuels. Environmental Research letters, 2012, No. 7, p. 10.10.1088/1748-9326/7/1/014030
  59. 59. Auziņš, J., Januševskis, A. Eksperimentu plānošana un analīze (Experimental planning and analysis). Latvia: Riga Technical University press, 2007. p. 256.
  60. 60. Keskinkan, O., Goksu, M. Z. L., Basibuyuk, M., et. al. Heavy metal adsorbtion properties of a submerged aquatic plant (Ceratophyllumdemersum). Bioresource Technology, 2004, No. 92 (2), pp. 197-200.10.1016/j.biortech.2003.07.01114693453
  61. 61. Aravind, P., Prasad, M. N. V. Zinc protects chloroplasts and associated photochemical functions in cadmium exposed Cerathophyllumdemersum L., a freshwater macrophyte. Plant Science, 2004, No. 166 (5), pp. 1321-1327.10.1016/j.plantsci.2004.01.011
  62. 62. Rajiv, K. S. Air, water and soil pollution science and technology: green plants and pollution. USA: Nova science publisher, 2010.
  63. 63. Block, T. A. Rhoads, A. F., Anisko, A. Aquatic Plants of Pennsylvania: A Complete Reference Guide Book. USA: University of Pennsylvania Press, 2011. http://dx.doi.org/10.9783/978081220504610.9783/9780812205046
  64. 64. Ha, M. H., Pflugmacher, S. Time-dependentalterations in growth, photosynthetic pigments and enzymatic defense systems of submerged Ceratphyllumdemersum during exposure to the cyanobacterial neurotoxin anatoxin-a. Aquatic toxicology, 2013, No.138, p. 26-34. http://dx.doi.org/10.1016/j.aquatox.2013.04.00710.1016/j.aquatox.2013.04.00723685387
  65. 65. METHOD 1684: Total, Fixed, and Volatile Solids in Water, Solids, and Biosolids. Environmental Protection Agency, Office of Water, Office of Science and Technology, Engineering and Analysis Division. USA: US EPA.2001.
DOI: https://doi.org/10.2478/rtuect-2014-0006 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 44 - 56
Published on: Dec 30, 2014
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2014 Laura Pastare, Francesco Romagnoli, Dace Lauka, Ilze Dzene, Tatjana Kuznecova, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.