References
- Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2024 Oct;18(5):911-920. DOI: 10.3322/caac.21660
- Siegel RL, Kratzer TB, Giaquinto AN, Sung H, Jemal A. Cancer statistics, 2025. CA Cancer J Clin. 2025 Jan-Feb;75(1):10-45. DOI: 10.3322/caac.21871
- Zhan H, Zhang S, Li L, Chen Z, Cai Y, Huang J, et al. Naftopidil enantiomers suppress androgen accumulation and induce cell apoptosis via the UDP-glucuronosyltransferase 2B15 in benign prostate hyperplasia. J Steroid Biochem Mol Biol. 2022 Jul;221:106117. DOI: 10.1016/j.jsbmb.2022.106117
- Ishii K, Matsuoka I, Kajiwara S, Sasaki T, Miki M, Kato M, et al. Additive naftopidil treatment synergizes docetaxel-induced apoptosis in human prostate cancer cells. J Cancer Res Clin Oncol. 2018 Jan;144:89-98. DOI: 10.1007/s00432-017-2536-x
- Maesaka F, Tanaka N, Nakai Y, Asakawa I, Tomizawa M, Owari T, et al. Comparison of disease-specific quality of life in prostate cancer patients treated with low-dose-rate brachytherapy: A randomized controlled trial of silodosin versus naftopidil. Int J Urol. 2021 Nov;28:1171-1176. DOI: 10.1111/iju.14667
- Iwamoto Y, Ishii K, Kanda H, Kato M, Miki M, Kajiwara S, et al. Combination treatment with naftopidil increases the efficacy of radiotherapy in PC-3 human prostate cancer cells. J Cancer Res Clin Oncol. 2017 Jun;143(6):933-939. DOI: 10.1007/s00432-017-2367-9
- Jiang H, Chen H, Wang Y, Xu H, Chen H. Synthesis, bioactivity, and molecular docking studies: novel arylpiperazine derivatives as potential new-resistant AR antagonists. Front Chem. 2025;13:1557275. DOI: 10.3389/fchem.2025.1557275
- Chen H, Qian Y, Jia H, Yu Y, Zhang H, Shen J, et al. Synthesis and pharmacological evaluation of naftopidil-based arylpiperazine derivatives containing the bromophenol moiety. Pharmacol Rep. 2020 Aug;72(4):1058-1068. DOI: 10.1007/s43440-019-00041-w
- Zhao Z, Le J, Fu Z, Yang S, Chen Y. Cancer network pharmacology: multi-network regulatory mechanisms and future directions. Med Oncol. 2025 Jun;42(7):255. DOI: 10.1007/s12032-025-02811-4
- Wang X, Miao YH, Zhao XM, Liu X, Hu YW, Deng DW. Perspectives on organ-on-a-chip technology for natural products evaluation. Food & Medicine Homology. 2025 Sep;145:156985. DOI: 10.26599/FMH.2024.9420013
- Wang H, Chen T, Wang Y, Li Y, Zhang L, Ding Y, et al. [CXC chemokine receptor 4 regulates breast cancer cell cycle through S phase kinase associated protein 2]. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2017 Jul;46(4):357-363. DOI: 10.3785/j.issn.1008-9292.2017.08.03
- Quistini A, Chierigo F, Fallara G, Depalma M, Tozzi M, Maggi M, et al. Androgen Receptor Signalling in Prostate Cancer: Mechanisms of Resistance to Endocrine Therapies. Res Rep Urol. 2025;17:211-223. DOI: 10.2147/RRU.S388265
- Shafi AA, Yen AE, Weigel NL. Androgen receptors in hormone-dependent and castration-resistant prostate cancer. Pharmacol Ther. 2013 Dec;140(3):223-38. DOI: 10.1016/j. pharmthera.2013.07.003
- Abd Wahab NA, Lajis NH, Abas F, Othman I, Naidu R. Mechanism of Anti-Cancer Activity of Curcumin on Androgen-Dependent and Androgen-Independent Prostate Cancer. Nutrients. 2020 Mar; 12(3). DOI: 10.3390/nu12030679
- Fang F, Qin Y, Hao F, Li Q, Zhang W, Zhao C, et al. CD147 modulates androgen receptor activity through the Akt/Gsk-3β/β-catenin/AR pathway in prostate cancer cells. Oncol Lett. 2016 Aug;12(2):1124-1128. DOI: 10.3892/ol.2016.4684
- Crisafi D, Wong BNX, Bolton D, Ischia J, Woon D. Urologist underutilisation of androgen receptor pathway inhibitors for metastatic hormone-sensitive prostate cancer. BJU Int. 2024 Dec;(0):12-13. DOI: 10.1111/bju.16570
- Cole RN, Fang Q, Matsuoka K, Wang Z. Androgen receptor inhibitors in treating prostate cancer. Asian J Androl. 2025 Mar; 27(2):144-155. DOI: 10.4103/aja202494
- Pisano C, Tucci M, Di Stefano RF, Turco F, Scagliotti GV, Di Maio M, et al. Interactions between androgen receptor signaling and other molecular pathways in prostate cancer progression: Current and future clinical implications. Crit Rev Oncol Hematol. 2021 Jan;157:103185. DOI: 10.1016/j.critrevonc.2020.103185
- Pearson HB, Li J, Meniel VS, Fennell CM, Waring P, Montgomery KG, et al. Identification of Pik3ca Mutation as a Genetic Driver of Prostate Cancer That Cooperates with Pten Loss to Accelerate Progression and Castration-Resistant Growth. Cancer Discov. 2018 Jun;8(6):764-779. DOI: 10.1158/2159-8290.CD-17-0867
- Guo R, Shi L, Chen Y, Lin C, Yin W. Exploring the roles of ncRNAs in prostate cancer via the PI3K/AKT/mTOR signaling pathway. Front Immunol. 2022 May;80:1-17. DOI: 10.3389/fimmu.2025.1525741
- Tewari D, Patni P, Bishayee A, Sah AN, Bishayee A. Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: A novel therapeutic strategy. Semin Cancer Biol. 2022 May;80:1-17. DOI: 10.1016/j.semcancer.2019.12.008
- Sarker D, Reid AH, Yap TA, de Bono JS. Targeting the PI3K/AKT pathway for the treatment of prostate cancer. Clin Cancer Res. 2009 Aug 1;15(15):4799-805. DOI: 10.1158/1078-0432.CCR-08-0125
- Marques RB, Aghai A, de Ridder CMA, Stuurman D, Hoeben S, Boer A, et al. High Efficacy of Combination Therapy Using PI3K/AKT Inhibitors with Androgen Deprivation in Prostate Cancer Preclinical Models. Eur Urol. 2015 Jun;67(6):1177-1185. DOI: 10.1016/j.eururo.2014.08.053
- Hoxhaj G, Manning BD. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer. 2020 Feb;20(2):74-88. DOI: 10.1038/s41568-019-0216-7
- Araki K, Miyoshi Y. Mechanism of resistance to endocrine therapy in breast cancer: the important role of PI3K/Akt/mTOR in estrogen receptor-positive, HER2-negative breast cancer. Breast Cancer. 2018 Jul;25(4):392-401. DOI: 10.1007/s12282-017-0812-x
- Noorolyai S, Shajari N, Baghbani E, Sadreddini S, Baradaran B. The relation between PI3K/AKT signalling pathway and cancer. Gene. 2019 May;698:120-128. DOI: 10.1016/j.gene.2019.02.076
- He Y, Sun MM, Zhang GG, Yang J, Chen KS, Xu WW, et al. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct Target Ther. 2021 Dec;6(1):425. DOI: 10.1038/s41392-021-00828-5
- Peng Y, Qi X, Ding L, Huang J, Liu Y, Zheng R, et al. SKP2 inhibition activates tumor cell-intrinsic immunity by inducing DNA replication stress and genomic instability. Br J Cancer. 2025 Jan;132(1):81-92. DOI: 10.1038/s41416-024-02909-y
- Brown LK, Kanagasabai T, Li G, Celada SI, Rumph JT, Adunyah SE, et al. Co-targeting SKP2 and KDM5B inhibits prostate cancer progression by abrogating AKT signaling with induction of senescence and apoptosis. Prostate. 2024 Jun;84(9):877-887.. DOI: 10.1002/pros.24706
- Feng T, Wang P, Zhang X. Skp2: A critical molecule for ubiquitination and its role in cancer. Life Sci. 2024 Feb; 1:338:122409. DOI: 10.1016/j.lfs.2023.122409
- Rezaeian AH, Phan LM, Zhou X, Wei W, Inuzuka H. Pharmacological inhibition of the SKP2/p300 signaling axis restricts castration-resistant prostate cancer. Neoplasia. 2023 Apr;38:100890. DOI: 10.1016/j.neo.2023.100890
- Asmamaw MD, Liu Y, Zheng YC, Shi XJ, Liu HM. Skp2 in the ubiquitin-proteasome system: A comprehensive review. Med Res Rev. 2020 Sep;40(5):1920-1949. DOI: 10.1002/med.21675
- Liu J, Peng Y, Shi L, Wan L, Inuzuka H, Long J, et al. Skp2 dictates cell cycle-dependent metabolic oscillation between glycolysis and TCA cycle. Cell Res. 2021 Jan;31(1):80-93. DOI: 10.1038/s41422-020-0372-z
- Park C, Lee JW, Kim K, Seen DS, Jeong JY, Huh WK. Simultaneous activation of CXC chemokine receptor 4 and histamine receptor H1 enhances calcium signaling and cancer cell migration. Sci Rep. 2023 Feb;13(1):1894. DOI: 10.1038/s41598-023-28531-1
- D’Agostino G, Cecchinato V, Uguccioni M. Chemokine Heterocomplexes and Cancer: A Novel Chapter to Be Written in Tumor Immunity. Front Immunol. 2018;9:2185. DOI: 10.3389/fimmu.2018.02185
- Gupta N, Ochiai H, Hoshino Y, Klein S, Zustin J, Ramjiawan RR, et al. Inhibition of CXCR4 Enhances the Efficacy of Radiotherapy in Metastatic Prostate Cancer Models. Cancers (Basel). 2023 Feb 6;15(4). DOI: 10.3390/cancers15041021
- Zhu WB, Zhao ZF, Zhou X. AMD3100 inhibits epithelialmesenchymal transition, cell invasion, and metastasis in the liver and the lung through blocking the SDF-1α/CXCR4 signaling pathway in prostate cancer. J Cell Physiol. 2019 Jul;234(7):11746-11759. DOI: 10.1002/jcp.27831