Have a personal or library account? Click to login
Mechanistic study of novel arylpiperazine derivative NAF19 in prostate cancer treatment based on network pharmacology approach Cover

Mechanistic study of novel arylpiperazine derivative NAF19 in prostate cancer treatment based on network pharmacology approach

Open Access
|Feb 2026

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2024 Oct;18(5):911-920. DOI: 10.3322/caac.21660
  2. Siegel RL, Kratzer TB, Giaquinto AN, Sung H, Jemal A. Cancer statistics, 2025. CA Cancer J Clin. 2025 Jan-Feb;75(1):10-45. DOI: 10.3322/caac.21871
  3. Zhan H, Zhang S, Li L, Chen Z, Cai Y, Huang J, et al. Naftopidil enantiomers suppress androgen accumulation and induce cell apoptosis via the UDP-glucuronosyltransferase 2B15 in benign prostate hyperplasia. J Steroid Biochem Mol Biol. 2022 Jul;221:106117. DOI: 10.1016/j.jsbmb.2022.106117
  4. Ishii K, Matsuoka I, Kajiwara S, Sasaki T, Miki M, Kato M, et al. Additive naftopidil treatment synergizes docetaxel-induced apoptosis in human prostate cancer cells. J Cancer Res Clin Oncol. 2018 Jan;144:89-98. DOI: 10.1007/s00432-017-2536-x
  5. Maesaka F, Tanaka N, Nakai Y, Asakawa I, Tomizawa M, Owari T, et al. Comparison of disease-specific quality of life in prostate cancer patients treated with low-dose-rate brachytherapy: A randomized controlled trial of silodosin versus naftopidil. Int J Urol. 2021 Nov;28:1171-1176. DOI: 10.1111/iju.14667
  6. Iwamoto Y, Ishii K, Kanda H, Kato M, Miki M, Kajiwara S, et al. Combination treatment with naftopidil increases the efficacy of radiotherapy in PC-3 human prostate cancer cells. J Cancer Res Clin Oncol. 2017 Jun;143(6):933-939. DOI: 10.1007/s00432-017-2367-9
  7. Jiang H, Chen H, Wang Y, Xu H, Chen H. Synthesis, bioactivity, and molecular docking studies: novel arylpiperazine derivatives as potential new-resistant AR antagonists. Front Chem. 2025;13:1557275. DOI: 10.3389/fchem.2025.1557275
  8. Chen H, Qian Y, Jia H, Yu Y, Zhang H, Shen J, et al. Synthesis and pharmacological evaluation of naftopidil-based arylpiperazine derivatives containing the bromophenol moiety. Pharmacol Rep. 2020 Aug;72(4):1058-1068. DOI: 10.1007/s43440-019-00041-w
  9. Zhao Z, Le J, Fu Z, Yang S, Chen Y. Cancer network pharmacology: multi-network regulatory mechanisms and future directions. Med Oncol. 2025 Jun;42(7):255. DOI: 10.1007/s12032-025-02811-4
  10. Wang X, Miao YH, Zhao XM, Liu X, Hu YW, Deng DW. Perspectives on organ-on-a-chip technology for natural products evaluation. Food & Medicine Homology. 2025 Sep;145:156985. DOI: 10.26599/FMH.2024.9420013
  11. Wang H, Chen T, Wang Y, Li Y, Zhang L, Ding Y, et al. [CXC chemokine receptor 4 regulates breast cancer cell cycle through S phase kinase associated protein 2]. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2017 Jul;46(4):357-363. DOI: 10.3785/j.issn.1008-9292.2017.08.03
  12. Quistini A, Chierigo F, Fallara G, Depalma M, Tozzi M, Maggi M, et al. Androgen Receptor Signalling in Prostate Cancer: Mechanisms of Resistance to Endocrine Therapies. Res Rep Urol. 2025;17:211-223. DOI: 10.2147/RRU.S388265
  13. Shafi AA, Yen AE, Weigel NL. Androgen receptors in hormone-dependent and castration-resistant prostate cancer. Pharmacol Ther. 2013 Dec;140(3):223-38. DOI: 10.1016/j. pharmthera.2013.07.003
  14. Abd Wahab NA, Lajis NH, Abas F, Othman I, Naidu R. Mechanism of Anti-Cancer Activity of Curcumin on Androgen-Dependent and Androgen-Independent Prostate Cancer. Nutrients. 2020 Mar; 12(3). DOI: 10.3390/nu12030679
  15. Fang F, Qin Y, Hao F, Li Q, Zhang W, Zhao C, et al. CD147 modulates androgen receptor activity through the Akt/Gsk-3β/β-catenin/AR pathway in prostate cancer cells. Oncol Lett. 2016 Aug;12(2):1124-1128. DOI: 10.3892/ol.2016.4684
  16. Crisafi D, Wong BNX, Bolton D, Ischia J, Woon D. Urologist underutilisation of androgen receptor pathway inhibitors for metastatic hormone-sensitive prostate cancer. BJU Int. 2024 Dec;(0):12-13. DOI: 10.1111/bju.16570
  17. Cole RN, Fang Q, Matsuoka K, Wang Z. Androgen receptor inhibitors in treating prostate cancer. Asian J Androl. 2025 Mar; 27(2):144-155. DOI: 10.4103/aja202494
  18. Pisano C, Tucci M, Di Stefano RF, Turco F, Scagliotti GV, Di Maio M, et al. Interactions between androgen receptor signaling and other molecular pathways in prostate cancer progression: Current and future clinical implications. Crit Rev Oncol Hematol. 2021 Jan;157:103185. DOI: 10.1016/j.critrevonc.2020.103185
  19. Pearson HB, Li J, Meniel VS, Fennell CM, Waring P, Montgomery KG, et al. Identification of Pik3ca Mutation as a Genetic Driver of Prostate Cancer That Cooperates with Pten Loss to Accelerate Progression and Castration-Resistant Growth. Cancer Discov. 2018 Jun;8(6):764-779. DOI: 10.1158/2159-8290.CD-17-0867
  20. Guo R, Shi L, Chen Y, Lin C, Yin W. Exploring the roles of ncRNAs in prostate cancer via the PI3K/AKT/mTOR signaling pathway. Front Immunol. 2022 May;80:1-17. DOI: 10.3389/fimmu.2025.1525741
  21. Tewari D, Patni P, Bishayee A, Sah AN, Bishayee A. Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: A novel therapeutic strategy. Semin Cancer Biol. 2022 May;80:1-17. DOI: 10.1016/j.semcancer.2019.12.008
  22. Sarker D, Reid AH, Yap TA, de Bono JS. Targeting the PI3K/AKT pathway for the treatment of prostate cancer. Clin Cancer Res. 2009 Aug 1;15(15):4799-805. DOI: 10.1158/1078-0432.CCR-08-0125
  23. Marques RB, Aghai A, de Ridder CMA, Stuurman D, Hoeben S, Boer A, et al. High Efficacy of Combination Therapy Using PI3K/AKT Inhibitors with Androgen Deprivation in Prostate Cancer Preclinical Models. Eur Urol. 2015 Jun;67(6):1177-1185. DOI: 10.1016/j.eururo.2014.08.053
  24. Hoxhaj G, Manning BD. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer. 2020 Feb;20(2):74-88. DOI: 10.1038/s41568-019-0216-7
  25. Araki K, Miyoshi Y. Mechanism of resistance to endocrine therapy in breast cancer: the important role of PI3K/Akt/mTOR in estrogen receptor-positive, HER2-negative breast cancer. Breast Cancer. 2018 Jul;25(4):392-401. DOI: 10.1007/s12282-017-0812-x
  26. Noorolyai S, Shajari N, Baghbani E, Sadreddini S, Baradaran B. The relation between PI3K/AKT signalling pathway and cancer. Gene. 2019 May;698:120-128. DOI: 10.1016/j.gene.2019.02.076
  27. He Y, Sun MM, Zhang GG, Yang J, Chen KS, Xu WW, et al. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct Target Ther. 2021 Dec;6(1):425. DOI: 10.1038/s41392-021-00828-5
  28. Peng Y, Qi X, Ding L, Huang J, Liu Y, Zheng R, et al. SKP2 inhibition activates tumor cell-intrinsic immunity by inducing DNA replication stress and genomic instability. Br J Cancer. 2025 Jan;132(1):81-92. DOI: 10.1038/s41416-024-02909-y
  29. Brown LK, Kanagasabai T, Li G, Celada SI, Rumph JT, Adunyah SE, et al. Co-targeting SKP2 and KDM5B inhibits prostate cancer progression by abrogating AKT signaling with induction of senescence and apoptosis. Prostate. 2024 Jun;84(9):877-887.. DOI: 10.1002/pros.24706
  30. Feng T, Wang P, Zhang X. Skp2: A critical molecule for ubiquitination and its role in cancer. Life Sci. 2024 Feb; 1:338:122409. DOI: 10.1016/j.lfs.2023.122409
  31. Rezaeian AH, Phan LM, Zhou X, Wei W, Inuzuka H. Pharmacological inhibition of the SKP2/p300 signaling axis restricts castration-resistant prostate cancer. Neoplasia. 2023 Apr;38:100890. DOI: 10.1016/j.neo.2023.100890
  32. Asmamaw MD, Liu Y, Zheng YC, Shi XJ, Liu HM. Skp2 in the ubiquitin-proteasome system: A comprehensive review. Med Res Rev. 2020 Sep;40(5):1920-1949. DOI: 10.1002/med.21675
  33. Liu J, Peng Y, Shi L, Wan L, Inuzuka H, Long J, et al. Skp2 dictates cell cycle-dependent metabolic oscillation between glycolysis and TCA cycle. Cell Res. 2021 Jan;31(1):80-93. DOI: 10.1038/s41422-020-0372-z
  34. Park C, Lee JW, Kim K, Seen DS, Jeong JY, Huh WK. Simultaneous activation of CXC chemokine receptor 4 and histamine receptor H1 enhances calcium signaling and cancer cell migration. Sci Rep. 2023 Feb;13(1):1894. DOI: 10.1038/s41598-023-28531-1
  35. D’Agostino G, Cecchinato V, Uguccioni M. Chemokine Heterocomplexes and Cancer: A Novel Chapter to Be Written in Tumor Immunity. Front Immunol. 2018;9:2185. DOI: 10.3389/fimmu.2018.02185
  36. Gupta N, Ochiai H, Hoshino Y, Klein S, Zustin J, Ramjiawan RR, et al. Inhibition of CXCR4 Enhances the Efficacy of Radiotherapy in Metastatic Prostate Cancer Models. Cancers (Basel). 2023 Feb 6;15(4). DOI: 10.3390/cancers15041021
  37. Zhu WB, Zhao ZF, Zhou X. AMD3100 inhibits epithelialmesenchymal transition, cell invasion, and metastasis in the liver and the lung through blocking the SDF-1α/CXCR4 signaling pathway in prostate cancer. J Cell Physiol. 2019 Jul;234(7):11746-11759. DOI: 10.1002/jcp.27831
DOI: https://doi.org/10.2478/rrlm-2026-0001 | Journal eISSN: 2284-5623 | Journal ISSN: 1841-6624
Language: English
Page range: 27 - 38
Submitted on: Aug 21, 2025
|
Accepted on: Nov 12, 2025
|
Published on: Feb 5, 2026
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2026 Hua Jiang, Mingzhen Xu, Songsong Jiang, Weiqiang Huang, Hong Chen, published by Romanian Association of Laboratory Medicine
This work is licensed under the Creative Commons Attribution 4.0 License.