Have a personal or library account? Click to login
Using deep learning methods to automatically interpret blood culture Gram stains Cover

Using deep learning methods to automatically interpret blood culture Gram stains

Open Access
|Nov 2025

References

  1. Laupland KB. Incidence of bloodstream infection: a review of populationbased studies. Clin Microbiol Infect. 2013; 19:492-500. DOI: 10.1111/1469-0691.12144
  2. Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis. 2004 Aug; 1;39(3):309-17. DOI: 10.1086/421946
  3. Schwaber MJ, Carmeli Y. Mortality and delay in effective therapy associated with extended-spectrum beta-lactamase production in Enterobacteriaceae bacteraemia: a systematic review and meta-analysis. J Antimicrob Chemother. 2007; 60:913-20. DOI: 10.1093/jac/dkm318
  4. Kang CI, Kim SH, Kim HB, Park SW, Choe YJ, Oh MD, et al. Pseudomonas aeruginosa bacteremia: risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clin Infect Dis. 2003; 37:745-51. DOI: 10.1086/377200
  5. Barenfanger J, Graham DR, Kolluri L, Sangwan G, Lawhorn J, Drake CA, et al. Decreased mortality associated with prompt Gram staining of blood cultures. Am J Clin Pathol. 2008; 130:870-6. DOI: 10.1309/AJCPVMDQU2ZJDPBL
  6. Garcia E, Ali AM, Soles RM, Lewis DG. The American Society for Clinical Pathology’s 2014 vacancy survey of medical laboratories in the United States. Am J Clin Pathol. 2015; 144:432-43. DOI: 10.1309/AJCPN7G0MXMSTXCD
  7. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Communications of the ACM. 2017; 60: 84-90. DOI: 10.1145/3065386
  8. Rhoads DD. Computer vision and artificial intelligence are emerging diagnostic tools for the clinical microbiologist. J Clin Microbiol. 2020; 58:e00511-20. DOI: 10.1128/JCM.00511-20
  9. Meyer J, Pare G. Telepathology impacts and implementation challenges: a scoping review. Arch Pathol Lab Med. 2015; 139:1550-7. DOI: 10.5858/arpa.2014-0606-RA
  10. Martinez RM, Wolk DM. Bloodstream infections. Microbiol Spectrum. 2016; 4(4):DMIH2-0031-2016. DOI: 10.1128/microbiolspec.DMIH2-0031-2016
  11. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition. 2016; pp. 770-8. DOI: 10.1109/CVPR.2016.90
  12. Jou B, Chang SF. Deep cross residual learning for multitask visual recognition. In Proceedings of the 24th ACM international conference on Multimedia. 2016; pp. 998-1007. DOI: 10.1145/2964284.2964309
  13. He T, Zhang Z, Zhang H, Zhang Z, Xie J, Li M. Bag of Tricks for Image Classification with Convolutional Neural Networks, IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019; pp. 558-67. DOI: 10.1109/CVPR.2019.00065
  14. Xie S, Girshick R, Dollár P, Tu Z, He K. Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2017; pp. 1492-500. DOI: 10.1109/CVPR.2017.634
  15. Howard A, Sandler M, Chu G, Chen LC, Chen B, Tan M, Adam H. Searching for mobilenetv3. In Proceedings of the IEEE/CVF international conference on computer vision. 2019; pp. 1314-24. DOI: 10.1109/ICCV.2019.00140
  16. Howard J, Gugger S. Fastai: A Layered API for Deep Learning. Information. 2020; 11:108. DOI: 10.3390/info11020108
  17. Goodfellow I, Bengio Y, Courville A. Deep learning. 2016; The MIT press.
  18. Russell, S. Artificial Intelligence: A Modern Approach, eBook, Global Edition; Pearson Education, Limited.
  19. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521:436-44. DOI: 10.1038/nature14539
  20. Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng. 2018; 2(10):719-31. DOI: 10.1038/s41551-018-0305-z
  21. Egli A, Schrenzel J, Greub G. Digital microbiology. Clin Microbiol Infect. 2020; 26(10):1324-31. DOI: 10.1016/j.cmi.2020.06.023
  22. Smith KP, Kirby JE. Image analysis and artificial intelligence in infectious disease diagnostics. Clin Microbiol Infect. 2020; 26:1318-23. DOI: 10.1016/j.cmi.2020.03.012
  23. Smith KP, Kang AD, Kirby JE. Automated Interpretation of blood culture Gram stains by use of a deep convolutional neural network. J Clin Microbiol. 2018 Feb 22;56(3):e01521-17. DOI: 10.1128/JCM.01521-17
  24. Linares M. Collaborative intelligence and gamification for online malaria species differentiation. Malar J. 2019; 18:21. DOI: 10.1186/s12936-019-2662-9
  25. Perkel JM. Pocket laboratories. Nature. 2017; 545:119-21. DOI: 10.1038/545119a
  26. Song Y, He L, Zhou F, Chen S, Ni D, Lei B, et al. Segmentation, splitting, and classification of overlapping bacteria in microscope images for automatic bacterial vaginosis diagnosis IEEE J Biomed Health Inform, 21, 2017; pp. 1095-104. DOI: 10.1109/JBHI.2016.2594239
  27. Poostchi M, Silamut K, Maude RJ, Jaeger S, Thoma G. Image analysis and machine learning for detecting malaria Transl Res, 194, 2018; pp. 36-55. DOI: 10.1016/j.trsl.2017.12.004
  28. Panicker R, Kalmady K, Rajan J, Sabu M. Automatic detection of tuberculosis bacilli from microscopic sputum smear images using deep learning methods. Biocybern Biomed Eng. 2018; 38(3):691-9. DOI: 10.1016/j.bbe.2018.05.007
  29. Fischer A, Azam N, Rasga L, Barras V, Tangomo M, Renzi G, et al. Performances of automated digital imaging of Gramstained slides with on-screen reading against manual microscopy. Eur J Clin Microbiol Infect Dis. 2021; 40(10):2171-6. DOI: 10.1007/s10096-021-04233-2
  30. Shaik F, Kumar Sharma A, Musthak Ahmed S, Kumar Gunjan V, Naik C. An improved model for analysis of diabetic Retinopathy related imagery, Indian Journal of Science and Technology. 2016; 9: 44, 1-6. DOI: 10.17485/ijst/2016/v9i44/105298
  31. Jameela T, Athota K, Singh N, Gunjan VK, Kahali S. Deep learning and transfer learning for malaria detection. Comput. Intell. Neurosci. 2022; 2022:1-14. DOI: 10.1155/2022/2221728
  32. Alnussairi MHD, İbrahim AA. Malaria parasite detection using deep learning algorithms based on (CNNs) technique, Comput. Elect. Eng. 2022; 103: 108316. DOI: 10.1016/j. compeleceng.2022.108316
DOI: https://doi.org/10.2478/rrlm-2025-0027 | Journal eISSN: 2284-5623 | Journal ISSN: 1841-6624
Language: English
Page range: 259 - 266
Submitted on: Jun 17, 2025
|
Accepted on: Sep 22, 2025
|
Published on: Nov 6, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Reyhan Yiş, Kenan Kocadurdu, Mustafa Berktaş, published by Romanian Association of Laboratory Medicine
This work is licensed under the Creative Commons Attribution 4.0 License.