References
- Louisy A, Humbert E, Samimi M. Oral Lichen Planus: An Update on Diagnosis and Management. Am J Clin Dermatol. 2024;25(1):35-53. DOI: 10.1007/s40257-023-00814-3
- Le Gatt P, Nguyen AT, Baaroun V, Rochefort J. Oral Lichen Planus in Patients With Good’s Syndrome: A Literature Review. Cureus. 2023;15(2):e35177. DOI: 10.7759/cureus.35177
- Mathew S, Lobo C, Antony M. Oral lichen planus. Cleve Clin J Med. 2023;90(12):717-8. DOI: 10.3949/ccjm.90a.23048
- DeAngelis LM, Cirillo N, Perez-Gonzalez A, McCullough M. Characterization of Mucosal-Associated Invariant T Cells in Oral Lichen Planus. Int J Mol Sci. 2023;24(2):1490. DOI: 10.3390/ijms24021490
- Dafar A, Siarov A, Mostaghimi Y, Robledo-Sierra J, De Lara S, Giglio D, et al. Langerhans Cells, T Cells, and B Cells in Oral Lichen Planus and Oral Leukoplakia. Int J Dent. 2022;22(1):5430309. DOI: 10.1155/2022/5430309
- DeBerardinis RJ, Chandel NS. We need to talk about the Warburg effect. Nat Metab. 2020;2(2):127-9. DOI: 10.1038/s42255-020-0172-2
- Hashimoto H, McCallion O, Kempkes RW, Hester J, Issa F. Distinct metabolic pathways mediate regulatory T cell differentiation and function. Immunol Lett. 2020;223:53-61. DOI: 10.1016/j. imlet.2020.04.011
- Jeong H, Lee B, Han SJ, Sohn DH. Glucose metabolic reprogramming in autoimmune diseases. Anim Cells Syst. 2023;27(1):149-58. DOI: 10.1080/19768354.2023.2234986
- Teng X, Cornaby C, Li W, Morel L. Metabolic regulation of pathogenic autoimmunity: therapeutic targeting. Curr Opin Immunol. 2019;61:10-6. DOI: 10.1016/j.coi.2019.07.001
- Martínez-Reyes I, Chandel NS. Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun. 2020;11(1):102. DOI: 10.1038/s41467-019-13668-3
- Wang F, Zhang J, Zhou G. HIF1α/PLD2 axis linked to glycolysis induces T-cell immunity in oral lichen planus. Biochim Biophys Acta Gen Subj. 2020;1864(7):129602. DOI: 10.1016/j. bbagen.2020.129602
- Yang Y, Hu P, Chen SR, Wu WW, Chen P, Wang SW, et al. Predicting the Activity of Oral Lichen Planus with Glycolysis-related Molecules: A Scikit- learn-based Function. Curr Med Sci. 2023;43(3):602-8. DOI: 10.1007/s11596-023-2716-7
- Wang QM, Huang XY, Guan WQ. Expressions of Interleukin-27 in oral lichen planus, oral leukoplakia, and oral squamous cell carcinoma. Inflammation. 2022;45(3):1023-38. DOI: 10.1007/s10753-021-01599-5
- El-Howati A, Thornhill MH, Colley HE, Murdoch C. Immune mechanisms in oral lichen planus. Oral Dis. 2023;29(4):1400-15. DOI: 10.1111/odi.14142
- Mozaffari HR, Molavi M, Lopez-Jornet P, Sadeghi M, Safaei M, Imani MM, et al. Salivary and Serum Interferon- Gamma/Interleukin-4 Ratio in Oral Lichen Planus Patients: A Systematic Review and Meta-Analysis. Medicina (Kaunas). 2019;55(6):257. DOI: 10.3390/medicina55060257
- Wei W, Wang Y, Sun Q, Jiang C, Zhu M, Song C, et al. Enhanced T-cell proliferation and IL-6 secretion mediated by overexpression of TRIM21 in oral lesions of patients with oral lichen planus. J Oral Pathol Med. 2020;49(4):350-356. DOI: 10.1111/jop.12938
- Zhao Z, Wang L, Zhang M, Zhou C, Wang Y, Ma J, et al. Reveals of quercetin’s therapeutic effects on oral lichen planus based on network pharmacology approach and experimental validation. Sci Rep. 2022;12(1):1162. DOI: 10.1038/s41598-022-04769-z
- Jiang L, Huang Y, Fang M, Chen X, Feng D, Liu J, et al. Dynamic changes of Th1/Th2/Th17 cytokines and hBD-2/3 in erosive oral lichen planus patients saliva before and after prednisone acetate treatment. Heliyon, 2024;10(1):e24043. DOI: 10.1016/j. heliyon.2024.e24043
- Zhang Z, Zhang Y, Zhao Z, Li P, Chen D, Wang W, et al. Paeoniflorin drives the immunomodulatory effects of mesenchymal stem cells by regulating Th1/Th2 cytokines in oral lichen planus. Sci Rep. 2022;12(1):18678. DOI: 10.1038/s41598-022-23158-0
- Liu W, Li M, Zhang X, Zhou Z, Shen Z, Shen X. Association of polymorphisms in Th1/Th2-related cytokines (IFN-γ, TGFβ1, IL-1β, IL-2, IL-4, IL-18) with oral lichen planus: A pooled analysis of case-control studies. J Dent Sci. 2023;18(2):560-6. DOI: 10.1016/j. jds.2022.08.032
- Mehrbani SP, Motahari P, Azar FP, et al. Role of interleukin-4 in pathogenesis of oral lichen planus: A systematic review. Med Oral Patol Oral Cir Bucal. 2020;25(3):e410-e5. DOI: 10.4317/medoral.23460
- Wang F, Zhang J, Zhou G. The mTOR-glycolytic pathway promotes T-cell immunobiology in oral lichen planus. Immunobiology. 2020;,225(3):151933. DOI: 10.1016/j.imbio.2020.151933
- Yuan Y, Fan G, Liu Y, Liu L, Zhang T, Liu P, et al. The transcription factor KLF14 regulates macrophage glycolysis and immune function by inhibiting HK2 in sepsis. Cell Mol Immunol. 2022;19(4):504-15. DOI: 10.1038/s41423-021-00806-5
- Chen L, Lin X, Lei Y, Xu X, Zhou Q, Chen Y, et al. Aerobic glycolysis enhances HBx-initiated hepatocellular carcinogenesis via NF-κBp65/HK2 signalling. J Exp Clin Cancer Res. 2022;41(1):329. DOI: 10.1186/s13046-022-02531-x
- Liu T, Wen Z, Shao L, Cui Y, Tang X, Miao H, et al. ATF4 knockdown in macrophage impairs glycolysis and mediates immune tolerance by targeting HK2 and HIF-1α ubiquitination in sepsis. Clin Immunol. 2023;254(1):109698. DOI: 10.1016/j.clim.2023.109698
- Zheng X, Shao J, Qian J, Liu S. circRPS19 affects HK2mediated aerobic glycolysis and cell viability via the miR125a5p/USP7 pathway in gastric cancer. Int J Oncol. 2023;63(2):98. DOI: 10.3892/ijo.2023.5546
- Fang J, Luo S, Lu Z. HK2: Gatekeeping microglial activity by tuning glucose metabolism and mitochondrial functions. Mol Cell. 2023;83(6):829-31. DOI: 10.1016/j.molcel.2023.02.022
- Campos M, Albrecht LV. Hitting the Sweet Spot: How Glucose Metabolism Is Orchestrated in Space and Time by Phosphofructokinase-1. Cancers. 2023;16(1):16. DOI: 10.3390/cancers16010016
- Park J, Lee DH. Protein phosphatase 4 dephosphorylates phosphofructokinase-1 to regulate its enzymatic activity. BMB Rep. 2023;56(11):618-23. DOI: 10.5483/BMBRep.2023-0065
- Wang JZ, Zhu W, Han J, Yang X, Zhou R, Lu HC, et al. The role of the HIF-1α/ALYREF/PKM2 axis in glycolysis and tumorigenesis of bladder cancer. Cancer Commun. 2021;41(7):560-75. DOI: 10.1002/cac2.12158
- Yu S, Zang W, Qiu Y, Liao L, Zheng X. Deubiquitinase OTUB2 exacerbates the progression of colorectal cancer by promoting PKM2 activity and glycolysis. Oncogene. 2022;41(1):46-56. DOI: 10.1038/s41388-021-02071-2
- Liu H, Takagaki Y, Kumagai A, Kanasaki K, Koya D. The PKM2 activator TEPP-46 suppresses kidney fibrosis via inhibition of the EMT program and aberrant glycolysis associated with suppression of HIF-1α accumulation. J Diabetes Investig. 2021;12(5):697-709. DOI: 10.1111/jdi.13478