Have a personal or library account? Click to login
Role of Th1/Th2 imbalance mediated by T cell glycolytic rate-limiting enzymes hexokinase 2, phosphofructokinase-1, and pyruvate kinase M2 in oral lichen planus
Louisy A, Humbert E, Samimi M. Oral Lichen Planus: An Update on Diagnosis and Management. Am J Clin Dermatol. 2024;25(1):35-53. DOI: 10.1007/s40257-023-00814-3
Le Gatt P, Nguyen AT, Baaroun V, Rochefort J. Oral Lichen Planus in Patients With Good’s Syndrome: A Literature Review. Cureus. 2023;15(2):e35177. DOI: 10.7759/cureus.35177
DeAngelis LM, Cirillo N, Perez-Gonzalez A, McCullough M. Characterization of Mucosal-Associated Invariant T Cells in Oral Lichen Planus. Int J Mol Sci. 2023;24(2):1490. DOI: 10.3390/ijms24021490
Dafar A, Siarov A, Mostaghimi Y, Robledo-Sierra J, De Lara S, Giglio D, et al. Langerhans Cells, T Cells, and B Cells in Oral Lichen Planus and Oral Leukoplakia. Int J Dent. 2022;22(1):5430309. DOI: 10.1155/2022/5430309
Hashimoto H, McCallion O, Kempkes RW, Hester J, Issa F. Distinct metabolic pathways mediate regulatory T cell differentiation and function. Immunol Lett. 2020;223:53-61. DOI: 10.1016/j. imlet.2020.04.011
Jeong H, Lee B, Han SJ, Sohn DH. Glucose metabolic reprogramming in autoimmune diseases. Anim Cells Syst. 2023;27(1):149-58. DOI: 10.1080/19768354.2023.2234986
Martínez-Reyes I, Chandel NS. Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun. 2020;11(1):102. DOI: 10.1038/s41467-019-13668-3
Yang Y, Hu P, Chen SR, Wu WW, Chen P, Wang SW, et al. Predicting the Activity of Oral Lichen Planus with Glycolysis-related Molecules: A Scikit- learn-based Function. Curr Med Sci. 2023;43(3):602-8. DOI: 10.1007/s11596-023-2716-7
Mozaffari HR, Molavi M, Lopez-Jornet P, Sadeghi M, Safaei M, Imani MM, et al. Salivary and Serum Interferon- Gamma/Interleukin-4 Ratio in Oral Lichen Planus Patients: A Systematic Review and Meta-Analysis. Medicina (Kaunas). 2019;55(6):257. DOI: 10.3390/medicina55060257
Wei W, Wang Y, Sun Q, Jiang C, Zhu M, Song C, et al. Enhanced T-cell proliferation and IL-6 secretion mediated by overexpression of TRIM21 in oral lesions of patients with oral lichen planus. J Oral Pathol Med. 2020;49(4):350-356. DOI: 10.1111/jop.12938
Zhao Z, Wang L, Zhang M, Zhou C, Wang Y, Ma J, et al. Reveals of quercetin’s therapeutic effects on oral lichen planus based on network pharmacology approach and experimental validation. Sci Rep. 2022;12(1):1162. DOI: 10.1038/s41598-022-04769-z
Jiang L, Huang Y, Fang M, Chen X, Feng D, Liu J, et al. Dynamic changes of Th1/Th2/Th17 cytokines and hBD-2/3 in erosive oral lichen planus patients saliva before and after prednisone acetate treatment. Heliyon, 2024;10(1):e24043. DOI: 10.1016/j. heliyon.2024.e24043
Zhang Z, Zhang Y, Zhao Z, Li P, Chen D, Wang W, et al. Paeoniflorin drives the immunomodulatory effects of mesenchymal stem cells by regulating Th1/Th2 cytokines in oral lichen planus. Sci Rep. 2022;12(1):18678. DOI: 10.1038/s41598-022-23158-0
Liu W, Li M, Zhang X, Zhou Z, Shen Z, Shen X. Association of polymorphisms in Th1/Th2-related cytokines (IFN-γ, TGFβ1, IL-1β, IL-2, IL-4, IL-18) with oral lichen planus: A pooled analysis of case-control studies. J Dent Sci. 2023;18(2):560-6. DOI: 10.1016/j. jds.2022.08.032
Mehrbani SP, Motahari P, Azar FP, et al. Role of interleukin-4 in pathogenesis of oral lichen planus: A systematic review. Med Oral Patol Oral Cir Bucal. 2020;25(3):e410-e5. DOI: 10.4317/medoral.23460
Wang F, Zhang J, Zhou G. The mTOR-glycolytic pathway promotes T-cell immunobiology in oral lichen planus. Immunobiology. 2020;,225(3):151933. DOI: 10.1016/j.imbio.2020.151933
Yuan Y, Fan G, Liu Y, Liu L, Zhang T, Liu P, et al. The transcription factor KLF14 regulates macrophage glycolysis and immune function by inhibiting HK2 in sepsis. Cell Mol Immunol. 2022;19(4):504-15. DOI: 10.1038/s41423-021-00806-5
Chen L, Lin X, Lei Y, Xu X, Zhou Q, Chen Y, et al. Aerobic glycolysis enhances HBx-initiated hepatocellular carcinogenesis via NF-κBp65/HK2 signalling. J Exp Clin Cancer Res. 2022;41(1):329. DOI: 10.1186/s13046-022-02531-x
Liu T, Wen Z, Shao L, Cui Y, Tang X, Miao H, et al. ATF4 knockdown in macrophage impairs glycolysis and mediates immune tolerance by targeting HK2 and HIF-1α ubiquitination in sepsis. Clin Immunol. 2023;254(1):109698. DOI: 10.1016/j.clim.2023.109698
Zheng X, Shao J, Qian J, Liu S. circRPS19 affects HK2mediated aerobic glycolysis and cell viability via the miR125a5p/USP7 pathway in gastric cancer. Int J Oncol. 2023;63(2):98. DOI: 10.3892/ijo.2023.5546
Fang J, Luo S, Lu Z. HK2: Gatekeeping microglial activity by tuning glucose metabolism and mitochondrial functions. Mol Cell. 2023;83(6):829-31. DOI: 10.1016/j.molcel.2023.02.022
Campos M, Albrecht LV. Hitting the Sweet Spot: How Glucose Metabolism Is Orchestrated in Space and Time by Phosphofructokinase-1. Cancers. 2023;16(1):16. DOI: 10.3390/cancers16010016
Park J, Lee DH. Protein phosphatase 4 dephosphorylates phosphofructokinase-1 to regulate its enzymatic activity. BMB Rep. 2023;56(11):618-23. DOI: 10.5483/BMBRep.2023-0065
Wang JZ, Zhu W, Han J, Yang X, Zhou R, Lu HC, et al. The role of the HIF-1α/ALYREF/PKM2 axis in glycolysis and tumorigenesis of bladder cancer. Cancer Commun. 2021;41(7):560-75. DOI: 10.1002/cac2.12158
Yu S, Zang W, Qiu Y, Liao L, Zheng X. Deubiquitinase OTUB2 exacerbates the progression of colorectal cancer by promoting PKM2 activity and glycolysis. Oncogene. 2022;41(1):46-56. DOI: 10.1038/s41388-021-02071-2
Liu H, Takagaki Y, Kumagai A, Kanasaki K, Koya D. The PKM2 activator TEPP-46 suppresses kidney fibrosis via inhibition of the EMT program and aberrant glycolysis associated with suppression of HIF-1α accumulation. J Diabetes Investig. 2021;12(5):697-709. DOI: 10.1111/jdi.13478