Have a personal or library account? Click to login

Role of Th1/Th2 imbalance mediated by T cell glycolytic rate-limiting enzymes hexokinase 2, phosphofructokinase-1, and pyruvate kinase M2 in oral lichen planus

Open Access
|Nov 2024

References

  1. Louisy A, Humbert E, Samimi M. Oral Lichen Planus: An Update on Diagnosis and Management. Am J Clin Dermatol. 2024;25(1):35-53. DOI: 10.1007/s40257-023-00814-3
  2. Le Gatt P, Nguyen AT, Baaroun V, Rochefort J. Oral Lichen Planus in Patients With Good’s Syndrome: A Literature Review. Cureus. 2023;15(2):e35177. DOI: 10.7759/cureus.35177
  3. Mathew S, Lobo C, Antony M. Oral lichen planus. Cleve Clin J Med. 2023;90(12):717-8. DOI: 10.3949/ccjm.90a.23048
  4. DeAngelis LM, Cirillo N, Perez-Gonzalez A, McCullough M. Characterization of Mucosal-Associated Invariant T Cells in Oral Lichen Planus. Int J Mol Sci. 2023;24(2):1490. DOI: 10.3390/ijms24021490
  5. Dafar A, Siarov A, Mostaghimi Y, Robledo-Sierra J, De Lara S, Giglio D, et al. Langerhans Cells, T Cells, and B Cells in Oral Lichen Planus and Oral Leukoplakia. Int J Dent. 2022;22(1):5430309. DOI: 10.1155/2022/5430309
  6. DeBerardinis RJ, Chandel NS. We need to talk about the Warburg effect. Nat Metab. 2020;2(2):127-9. DOI: 10.1038/s42255-020-0172-2
  7. Hashimoto H, McCallion O, Kempkes RW, Hester J, Issa F. Distinct metabolic pathways mediate regulatory T cell differentiation and function. Immunol Lett. 2020;223:53-61. DOI: 10.1016/j. imlet.2020.04.011
  8. Jeong H, Lee B, Han SJ, Sohn DH. Glucose metabolic reprogramming in autoimmune diseases. Anim Cells Syst. 2023;27(1):149-58. DOI: 10.1080/19768354.2023.2234986
  9. Teng X, Cornaby C, Li W, Morel L. Metabolic regulation of pathogenic autoimmunity: therapeutic targeting. Curr Opin Immunol. 2019;61:10-6. DOI: 10.1016/j.coi.2019.07.001
  10. Martínez-Reyes I, Chandel NS. Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun. 2020;11(1):102. DOI: 10.1038/s41467-019-13668-3
  11. Wang F, Zhang J, Zhou G. HIF1α/PLD2 axis linked to glycolysis induces T-cell immunity in oral lichen planus. Biochim Biophys Acta Gen Subj. 2020;1864(7):129602. DOI: 10.1016/j. bbagen.2020.129602
  12. Yang Y, Hu P, Chen SR, Wu WW, Chen P, Wang SW, et al. Predicting the Activity of Oral Lichen Planus with Glycolysis-related Molecules: A Scikit- learn-based Function. Curr Med Sci. 2023;43(3):602-8. DOI: 10.1007/s11596-023-2716-7
  13. Wang QM, Huang XY, Guan WQ. Expressions of Interleukin-27 in oral lichen planus, oral leukoplakia, and oral squamous cell carcinoma. Inflammation. 2022;45(3):1023-38. DOI: 10.1007/s10753-021-01599-5
  14. El-Howati A, Thornhill MH, Colley HE, Murdoch C. Immune mechanisms in oral lichen planus. Oral Dis. 2023;29(4):1400-15. DOI: 10.1111/odi.14142
  15. Mozaffari HR, Molavi M, Lopez-Jornet P, Sadeghi M, Safaei M, Imani MM, et al. Salivary and Serum Interferon- Gamma/Interleukin-4 Ratio in Oral Lichen Planus Patients: A Systematic Review and Meta-Analysis. Medicina (Kaunas). 2019;55(6):257. DOI: 10.3390/medicina55060257
  16. Wei W, Wang Y, Sun Q, Jiang C, Zhu M, Song C, et al. Enhanced T-cell proliferation and IL-6 secretion mediated by overexpression of TRIM21 in oral lesions of patients with oral lichen planus. J Oral Pathol Med. 2020;49(4):350-356. DOI: 10.1111/jop.12938
  17. Zhao Z, Wang L, Zhang M, Zhou C, Wang Y, Ma J, et al. Reveals of quercetin’s therapeutic effects on oral lichen planus based on network pharmacology approach and experimental validation. Sci Rep. 2022;12(1):1162. DOI: 10.1038/s41598-022-04769-z
  18. Jiang L, Huang Y, Fang M, Chen X, Feng D, Liu J, et al. Dynamic changes of Th1/Th2/Th17 cytokines and hBD-2/3 in erosive oral lichen planus patients saliva before and after prednisone acetate treatment. Heliyon, 2024;10(1):e24043. DOI: 10.1016/j. heliyon.2024.e24043
  19. Zhang Z, Zhang Y, Zhao Z, Li P, Chen D, Wang W, et al. Paeoniflorin drives the immunomodulatory effects of mesenchymal stem cells by regulating Th1/Th2 cytokines in oral lichen planus. Sci Rep. 2022;12(1):18678. DOI: 10.1038/s41598-022-23158-0
  20. Liu W, Li M, Zhang X, Zhou Z, Shen Z, Shen X. Association of polymorphisms in Th1/Th2-related cytokines (IFN-γ, TGFβ1, IL-1β, IL-2, IL-4, IL-18) with oral lichen planus: A pooled analysis of case-control studies. J Dent Sci. 2023;18(2):560-6. DOI: 10.1016/j. jds.2022.08.032
  21. Mehrbani SP, Motahari P, Azar FP, et al. Role of interleukin-4 in pathogenesis of oral lichen planus: A systematic review. Med Oral Patol Oral Cir Bucal. 2020;25(3):e410-e5. DOI: 10.4317/medoral.23460
  22. Wang F, Zhang J, Zhou G. The mTOR-glycolytic pathway promotes T-cell immunobiology in oral lichen planus. Immunobiology. 2020;,225(3):151933. DOI: 10.1016/j.imbio.2020.151933
  23. Yuan Y, Fan G, Liu Y, Liu L, Zhang T, Liu P, et al. The transcription factor KLF14 regulates macrophage glycolysis and immune function by inhibiting HK2 in sepsis. Cell Mol Immunol. 2022;19(4):504-15. DOI: 10.1038/s41423-021-00806-5
  24. Chen L, Lin X, Lei Y, Xu X, Zhou Q, Chen Y, et al. Aerobic glycolysis enhances HBx-initiated hepatocellular carcinogenesis via NF-κBp65/HK2 signalling. J Exp Clin Cancer Res. 2022;41(1):329. DOI: 10.1186/s13046-022-02531-x
  25. Liu T, Wen Z, Shao L, Cui Y, Tang X, Miao H, et al. ATF4 knockdown in macrophage impairs glycolysis and mediates immune tolerance by targeting HK2 and HIF-1α ubiquitination in sepsis. Clin Immunol. 2023;254(1):109698. DOI: 10.1016/j.clim.2023.109698
  26. Zheng X, Shao J, Qian J, Liu S. circRPS19 affects HK2mediated aerobic glycolysis and cell viability via the miR125a5p/USP7 pathway in gastric cancer. Int J Oncol. 2023;63(2):98. DOI: 10.3892/ijo.2023.5546
  27. Fang J, Luo S, Lu Z. HK2: Gatekeeping microglial activity by tuning glucose metabolism and mitochondrial functions. Mol Cell. 2023;83(6):829-31. DOI: 10.1016/j.molcel.2023.02.022
  28. Campos M, Albrecht LV. Hitting the Sweet Spot: How Glucose Metabolism Is Orchestrated in Space and Time by Phosphofructokinase-1. Cancers. 2023;16(1):16. DOI: 10.3390/cancers16010016
  29. Park J, Lee DH. Protein phosphatase 4 dephosphorylates phosphofructokinase-1 to regulate its enzymatic activity. BMB Rep. 2023;56(11):618-23. DOI: 10.5483/BMBRep.2023-0065
  30. Wang JZ, Zhu W, Han J, Yang X, Zhou R, Lu HC, et al. The role of the HIF-1α/ALYREF/PKM2 axis in glycolysis and tumorigenesis of bladder cancer. Cancer Commun. 2021;41(7):560-75. DOI: 10.1002/cac2.12158
  31. Yu S, Zang W, Qiu Y, Liao L, Zheng X. Deubiquitinase OTUB2 exacerbates the progression of colorectal cancer by promoting PKM2 activity and glycolysis. Oncogene. 2022;41(1):46-56. DOI: 10.1038/s41388-021-02071-2
  32. Liu H, Takagaki Y, Kumagai A, Kanasaki K, Koya D. The PKM2 activator TEPP-46 suppresses kidney fibrosis via inhibition of the EMT program and aberrant glycolysis associated with suppression of HIF-1α accumulation. J Diabetes Investig. 2021;12(5):697-709. DOI: 10.1111/jdi.13478
DOI: https://doi.org/10.2478/rrlm-2024-0029 | Journal eISSN: 2284-5623 | Journal ISSN: 1841-6624
Language: English
Page range: 345 - 351
Submitted on: Jul 23, 2024
Accepted on: Oct 4, 2024
Published on: Nov 6, 2024
Published by: Romanian Association of Laboratory Medicine
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2024 Min Yao, Lijuan Li, Lingling Xiao, Yunxia Zhuang, Guangrong Sun, published by Romanian Association of Laboratory Medicine
This work is licensed under the Creative Commons Attribution 4.0 License.