Have a personal or library account? Click to login
Function of the S1P pathway in hypoxia-induced cardiovascular failure Cover

Function of the S1P pathway in hypoxia-induced cardiovascular failure

By: Fangping Zhou and  Weihong Tang  
Open Access
|Jan 2024

References

  1. Inoue T, Node K. Vascular failure: A new clinical entity for vascular disease. Journal of hypertension. 2006;24(11):2121-30. DOI: 10.1097/01.hjh.0000249684.76296.4f
  2. Ziaeian B, Fonarow G: Epidemiology and aetiology of heart failure. Nature Rev Cardiol. 2016;13(6):368-78. DOI: 10.1038/nrcardio.2016.25
  3. Narula J, Haider N, Arbustini E, Chandrashekhar Y. Mechanisms of disease: apoptosis in heart failure-seeing hope in death. Nature clinical practice Cardiovascular medicine 2006;3(12):681-8. DOI: 10.1038/ncpcardio0710
  4. Gaudino M, Andreotti F, Kimura T. Current concepts in coronary artery revascularisation. Lancet (London, England) 2023;401(10388):1611-28. DOI: 10.1016/S0140-6736(23)00459-2
  5. Agrawal R, Sharafkhaneh A, Nambi V, BaHammam A, Razjouyan J. Obstructive sleep apnea modulates clinical outcomes post-acute myocardial infarction: A large longitudinal veterans’ dataset report. Respiratory Med. 2023;211:107214. DOI: 10.1016/j. rmed.2023.107214
  6. Lu M, Fang F, Wang Z, Xu L, Sanderson J, Zhan X, et al. Association Between OSA and Quantitative Atherosclerotic Plaque Burden: A Coronary CT Angiography Study. Chest. 2021;160(5):1864-74. DOI: 10.1016/j.chest.2021.07.040
  7. Libby P. Mechanisms of acute coronary syndromes and their implications for therapy. New England J Med. 2013;368(21):2004-2013. DOI: 10.1056/NEJMra1216063
  8. Björkegren J, Lusis A. Atherosclerosis: Recent developments. Cell. 2022;185(10):1630-45. DOI: 10.1016/j.cell.2022.04.004
  9. Daugherty A. Mouse models of atherosclerosis. Am J Med Sci. 2002;323(1):3-10. DOI: 10.1097/00000441-200201000-00002
  10. Zhang Y, Fatima M, Hou S, Bai L, Zhao S, Liu E. Research methods for animal models of atherosclerosis (Review). Molec Med Rep. 2021;24(6). DOI: 10.3892/mmr.2021.12511
  11. Morand J, Arnaud C, Pepin J, Godin-Ribuot D. Chronic intermittent hypoxia promotes myocardial ischemia-related ventricular arrhythmias and sudden cardiac death. Sci Rep. 2018;8(1):2997. DOI: 10.1038/s41598-018-21064-y
  12. [Chinese guidelines for the diagnosis and treatment of heart failure 2018]. Zhonghua xin xue guan bing za zhi 2018;46(10):760-89.
  13. Cowie M, Gallagher A. Sleep Disordered Breathing and Heart Failure: What Does the Future Hold? JACC Heart failure. 2017;5(10):715-23. DOI: 10.1016/j.jchf.2017.06.016
  14. Tsai H, Han M. Sphingosine-1-Phosphate (S1P) and S1P Signaling Pathway: Therapeutic Targets in Autoimmunity and Inflammation. Drugs. 2016;76(11):1067-79. DOI: 10.1007/s40265-016-0603-2
  15. Yu F, Yuan C, Tong J, Zhang G, Zhou F, Yang F. Protective effect of sphingosine-1-phosphate for chronic intermittent hypoxia-induced endothelial cell injury. Biochem Biophys Res Com. 2018;498(4):1016-21. DOI: 10.1016/j.bbrc.2018.03.106
  16. Maceyka M, Spiegel S: Sphingolipid metabolites in inflammatory disease. Nature. 2014;510(7503):58-67. DOI: 10.1038/nature13475
  17. Syed S, Raue R, Weigert A, von Knethen A, Brüne B. Macrophage S1PR1 Signaling Alters Angiogenesis and Lymphangiogenesis During Skin Inflammation. Cells. 2019;8(8). DOI: 10.3390/cells8080785
  18. Yoon C, Hong B, Moon H, Lim S, Suh P, Kim Y, et al. Sphingosine-1-phosphate promotes lymphangiogenesis by stimulating S1P1/Gi/PLC/Ca2+ signaling pathways. Blood. 2008;112(4):1129-1138. DOI: 10.1182/blood-2007-11-125203
  19. Zhang J, Hu C, Jiao X, Yang Y, Li J, Yu H, et al. Potential Role of mRNAs and LncRNAs in Chronic Intermittent Hypoxia Exposure-Aggravated Atherosclerosis. Front Genet. 2020;11:290. DOI: 10.3389/fgene.2020.00290
  20. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC bioinformatics. 2008;9:559. DOI: 10.1186/1471-2105-9-559
  21. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al: clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation. 2021;2(3):100141. DOI: 10.1016/j.xinn.2021.100141
  22. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38(4):576-589. DOI: 10.1016/j. molcel.2010.05.004
  23. Zhang G, Yu F, Li Y, Wei Q, Song S, Zhou F, Tong J. Prolyl 4-Hydroxylase Domain Protein 3 Overexpression Improved Obstructive Sleep Apnea-Induced Cardiac Perivascular Fibrosis Partially by Suppressing Endothelial-to-Mesenchymal Transition. J Am Heart Assoc. 2017,;6(10). DOI: 10.1161/JAHA.117.006680
  24. Zhang J, Hu C, Jiao X, Yang Y, Li J, Yu H, et al. Potential Role of mRNAs and LncRNAs in Chronic Intermittent Hypoxia Exposure-Aggravated Atherosclerosis. Front Genetics. 2020;11:290. DOI: 10.3389/fgene.2020.00290
  25. Barile L, Lionetti V, Cervio E, Matteucci M, Gherghiceanu M, Popescu L, et al. Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovascular Res. 2014, 103(4):530-541. DOI: 10.1093/cvr/cvu167
  26. Alioglu E, Ercan E, Sonmez Tamer G, Duman C, Turk U, Tengiz I, et al. Decreased circulatory erythropoietin in hyperacute phase of myocardial ischemia. Int J Cardiol. 2011;146(3):e49-52. DOI: 10.1016/j.ijcard.2008.12.184
  27. Bilo G, Gatterer H, Torlasco C, Villafuerte F, Parati G. Editorial: Hypoxia in cardiovascular disease. Front Cardiovasc Med. 2022;9:990013. DOI: 10.3389/fcvm.2022.990013
  28. Kubasiak L, Hernandez O, Bishopric N, Webster K. Hypoxia and acidosis activate cardiac myocyte death through the Bcl-2 family protein BNIP3. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(20):12825-12830. DOI: 10.1073/pnas.202474099
  29. Pio-Abreu A, Moreno H, Drager L. Obstructive sleep apnea and ambulatory blood pressure monitoring: current evidence and research gaps. J Human Hypert. 2021;35(4):315-324. DOI: 10.1038/s41371-020-00470-8
  30. Cartier A, Hla T: Sphingosine 1-phosphate: Lipid signaling in pathology and therapy. Science 2019;366(6463). DOI: 10.1126/science.aar5551
  31. Bravo G, Cedeño R, Casadevall M, Ramió-Torrentà L. Sphingosine-1-Phosphate (S1P) and S1P Signaling Pathway Modulators, from Current Insights to Future Perspectives. Cells. 2022;11(13):2058. DOI: 10.3390/cells11132058
  32. Psallidas I, Stathopoulos G, Maniatis N, Magkouta S, Moschos C, Karabela S, et al. Secreted phosphoprotein-1 directly provokes vascular leakage to foster malignant pleural effusion. Oncogene. 2013;32(4):528-35. DOI: 10.1038/onc.2012.57
  33. Smith-Garvin JE, Koretzky GA, Jordan MS. T cell activation. Annu Rev Immunol. 2009;27:591-619. DOI: 10.1146/annurev. immunol.021908.132706
  34. Lee TS, Lu TM, Chen CH, Guo BC, Hsu CP. Hyperuricemia induces endothelial dysfunction and accelerates atherosclerosis by disturbing the asymmetric dimethylarginine/dimethylarginine dimethylaminotransferase 2 pathway. Redox Biol. 2021;46:102108. DOI: 10.1016/j.redox.2021.102108
  35. Mandl M, Kapeller B, Lieber R, Macfelda K. Hypoxia-inducible factor-1β (HIF-1β) is upregulated in a HIF-1α-dependent manner in 518A2 human melanoma cells under hypoxic conditions. Biochem Biophys Res Commun. 2013;434(1):166-72. DOI: 10.1016/j.bbrc.2013.03.051
  36. Semenza G: Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148(3):399-408. DOI: 10.1016/j.cell.2012.01.021
  37. Sato T, Takeda N. The roles of HIF-1α signaling in cardiovascular diseases. Journal of cardiology 2023.81(2):202-208. DOI: 10.1016/j.jjcc.2022.09.002
  38. Masoud G, Li W. HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B. 2015 Sep;5(5):378-89. DOI: 10.1016/j.apsb.2015.05.007
  39. Sakai D, Sugawara T, Kurokawa T, Murakami Y, Tomosugi M, Masuta H, et al. Hif1α-dependent hypoxia signaling contributes to the survival of deep-layer neurons and cortex formation in a mouse model. Molec Brain. 2022;15(1):28. DOI: 10.1186/s13041-022-00911-0
  40. Bouquerel P, Gstalder C, Müller D, Laurent J, Brizuela L, Sabbadini RA, et al: Essential role for SphK1/S1P signaling to regulate hypoxia-inducible factor 2α expression and activity in cancer. Oncogenesis. 2016;5(3):e209. DOI: 10.1038/oncsis.2016.13
  41. Wu T, Shao Y, Li X, Wu T, Yu L, Liang J, et al. NR3C1/Glucocorticoid receptor activation promotes pancreatic β-cell autophagy overload in response to glucolipotoxicity. Autophagy. 2023:1-20. DOI: 10.1080/15548627.2023.2200625
  42. Sundahl N, Bridelance J, Libert C, De Bosscher K, Beck I. Selective glucocorticoid receptor modulation: New directions with nonsteroidal scaffolds. Pharmacol Therap. 2015;152:28-41. DOI: 10.1016/j.pharmthera.2015.05.001
  43. Leonard M, Godson C, Brady H, Taylor C. Potentiation of glucocorticoid activity in hypoxia through induction of the glucocorticoid receptor. J Immunol. 2005;174(4):2250-7. DOI: 10.4049/jimmunol.174.4.2250
DOI: https://doi.org/10.2478/rrlm-2024-0006 | Journal eISSN: 2284-5623 | Journal ISSN: 1841-6624
Language: English
Page range: 73 - 84
Submitted on: Dec 12, 2023
Accepted on: Jan 9, 2024
Published on: Jan 29, 2024
Published by: Romanian Association of Laboratory Medicine
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Fangping Zhou, Weihong Tang, published by Romanian Association of Laboratory Medicine
This work is licensed under the Creative Commons Attribution 4.0 License.