Have a personal or library account? Click to login
The potential value of some adipokines and cytokines as diagnostic biomarkers for prostate cancer Cover

The potential value of some adipokines and cytokines as diagnostic biomarkers for prostate cancer

Open Access
|Oct 2023

References

  1. Sharma S, Zapatero-Rodriguez J, O’Kennedy R. Prostate cancer diagnostics: Clinical challenges and the ongoing need for disruptive and effective diagnostic tools. Biotechnology Advances. 2017;35(2):135-49. DOI: 10.1016/j.biotechadv.2016.11.009
  2. Hanahan D. Hallmarks of cancer: new dimensions. Cancer discovery. 2022;12(1):31-46. DOI: 10.1158/2159-8290.CD-21-1059
  3. Sfanos KS, De Marzo AM. Prostate cancer and inflammation: the evidence. Histopathology. 2012;60(1):199-215. DOI: 10.1111/j.1365-2559.2011.04033.x
  4. Kurowska P, Mlyczyńska E, Dawid M, Jurek M, Klimczyk D, Dupont J, et al. Vaspin (SERPINA12) expression and function in endocrine cells. Cells. 2021;10(7):1710. DOI: 10.3390/cells10071710
  5. Zhang P, Wang G, Gui Y, Guo Z, Ren R, Sun Y, et al. Serum vaspin as a predictor of severity and prognosis in acute ischemic stroke patients. Nutritional Neuroscience. 2022;25(4):737-45. DOI: 10.1080/1028415X.2020.1806191
  6. Agarwal S, Desai S. Vaspin and its relation to cancer. World Academy of Sciences Journal. 2021;3(6):1-6. DOI: 10.3892/wasj.2021.129
  7. Si H, Zhang Y, Song Y, Li L. Overexpression of adrenomedullin protects mesenchymal stem cells against hypoxia and serum deprivationinduced apoptosis via the Akt/GSK3β and Bcl2 signaling pathways. International journal of molecular medicine. 2018;41(6):3342-52. DOI: 10.3892/ijmm.2018.3533
  8. Treeck O, Buechler C, Ortmann O. Chemerin and cancer. International journal of molecular sciences. 2019;20(15):3750. DOI: 10.3390/ijms20153750
  9. Groblewska M, Litman-Zawadzka A, Mroczko B. The role of selected chemokines and their receptors in the development of gliomas. International journal of molecular sciences. 2020;21(10):3704. DOI: 10.3390/ijms21103704
  10. Jaikanth C, Gurumurthy P, Cherian K, Indhumathi T. Emergence of omentin as a pleiotropic adipocytokine. Experimental and clinical endocrinology & diabetes. 2013;121(07):377-83. DOI: 10.1055/s-0033-1345123
  11. Uyeturk U, Sarıcı H, Kın Tekce B, Eroglu M, Kemahlı E, Uyeturk U, et al. Serum omentin level in patients with prostate cancer. Medical oncology. 2014;31:1-5. DOI: 10.1007/s12032-014-0923-6
  12. Li B. Effects of NFκB Inhibition on Macrophage-adipocytes-prostate Cancer Cell Crosstalk: University of Sheffield; 2021.
  13. Wang W, Nag SA, Zhang R. Targeting the NFκB signaling pathways for breast cancer prevention and therapy. Current medicinal chemistry. 2015;22(2):264-89. DOI: 10.2174/092986732166614 1106124315
  14. Davidsson S, Carlsson J, Greenberg L, Wijkander J, Söderquist B, Erlandsson A. Cutibacterium acnes induces the expression of immunosuppressive genes in macrophages and is associated with an increase of regulatory T-cells in prostate cancer. Microbiology spectrum. 2021;9(3):e01497-21. DOI: 10.1128/spectrum.01497-21
  15. Kumar A, Khani AT, Ortiz AS, Swaminathan S. GM-CSF: A double-edged sword in cancer immunotherapy. Frontiers in Immunology. 2022;13. DOI: 10.3389/fimmu.2022.901277
  16. Rourke J, Dranse H, Sinal C. Towards an integrative approach to understanding the role of chemerin in human health and disease. Obesity Reviews. 2013;14(3):245-62. DOI: 10.1111/obr.12009
  17. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nature reviews immunology. 2011;11(2):85-97. DOI: 10.1038/nri2921
  18. Kaur J, Adya R, Tan BK, Chen J, Randeva HS. Identification of chemerin receptor (ChemR23) in human endothelial cells: chemerin-induced endothelial angiogenesis. Biochemical and biophysical research communications. 2010;391(4):1762-8. DOI: 10.1016/j.bbrc.2009.12.150
  19. Gunter MJ, Hoover DR, Yu H, Wassertheil-Smoller S, Rohan TE, Manson JE, et al. Insulin, insulin-like growth factor-I, endogenous estradiol, and risk of colorectal cancer in postmenopausal women. Cancer research. 2008;68(1):329-37. DOI: 10.1158/0008-5472. CAN-07-2946
  20. Booth A, Magnuson A, Fouts J, Foster M. Adipose tissue, obesity and adipokines: role in cancer promotion. Hormone molecular biology and clinical investigation. 2015;21(1):57-74. DOI: 10.1515/hmbci-2014-0037
  21. Erdogan S, Yilmaz FM, Yazici O, Yozgat A, Sezer S, Ozdemir N, et al. Inflammation and chemerin in colorectal cancer. Tumor Biology. 2016;37:6337-42. DOI: 10.1007/s13277-015-4483-y
  22. Wang C, Wu WK, Liu X, To K-F, Chen GG, Yu J, et al. Increased serum chemerin level promotes cellular invasiveness in gastric cancer: a clinical and experimental study. Peptides. 2014;51:131-8. DOI: 10.1016/j.peptides.2013.10.009
  23. Fazeli MS, Dashti H, Akbarzadeh S, Assadi M, Aminian A, Keramati MR, et al. Circulating levels of novel adipocytokines in patients with colorectal cancer. Cytokine. 2013;62(1):81-5. DOI: 10.1016/j. cyto.2013.02.012
  24. Wong RS. Apoptosis in cancer: from pathogenesis to treatment. Journal of experimental & clinical cancer research. 2011;30(1):1-14. DOI: 10.1186/1756-9966-30-87
  25. Danielsen SA, Eide PW, Nesbakken A, Guren T, Leithe E, Lothe RA. Portrait of the PI3K/AKT pathway in colorectal cancer. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2015;1855(1):104-21. DOI: 10.1016/j.bbcan.2014.09.008
  26. Zhao X, Zhang Y, Deng L, Wang Y, Li Y, Chen M. The association between Chinese patients’ elevated omentin-1 levels, their clinicopathological features, and the risk of colorectal cancer. International journal of clinical and experimental pathology. 2019;12(6):2264.
  27. Washimi K, Yokose T, Yamashita M, Kageyama T, Suzuki K, Yoshihara M, et al. Specific expression of human intelectin-1 in malignant pleural mesothelioma and gastrointestinal goblet cells. PLoS One. 2012;7(7):e39889. DOI: 10.1371/journal.pone.0039889
  28. Karabulut S, Afsar CU, Karabulut M, Alis H, Bozkurt MA, Aydogan F, et al. Clinical significance of serum omentin-1 levels in patients with pancreatic adenocarcinoma. BBA clinical. 2016;6:138-42. DOI: 10.1016/j.bbacli.2016.10.002
  29. Zhou L, He W, Wang W, Zhou D. Altered circulating levels of adipokine omentin-1 in patients with prostate cancer. OncoTargets and therapy. 2019;12:3313. DOI: 10.2147/OTT. S197507
  30. Fryczkowski M, Bułdak R, Hejmo T, Kukla M, Żwirska-Korczala K. Circulating levels of omentin, leptin, VEGF, and HGF and their clinical relevance with PSA marker in prostate cancer. Disease markers. 2018;2018. DOI: 10.1155/2018/3852401
  31. Zhang Y-Y, Zhou L-M. Omentin-1, a new adipokine, promotes apoptosis through regulating Sirt1-dependent p53 deacetylation in hepatocellular carcinoma cells. European journal of pharmacology. 2013;698(1-3):137-44. DOI: 10.1016/j. ejphar.2012.11.016
  32. Ji H, Wan L, Zhang Q, Chen M, Zhao X. The effect of omentin-1 on the proliferation and apoptosis of colon cancer stem cells and the potential mechanism. J buon. 2019;24(1):91-8.
  33. Zhang Y, Zhao X, Chen M. Autocrine action of adipokine omentin1 in the SW480 colon cancer cell line. Oncology Letters. 2020;19(1):892-8. DOI: 10.3892/ol.2019.11131
  34. Borowski A, Siemińska L. Serum omentin levels in patients with prostate cancer and associations with sex steroids and metabolic syndrome. Journal of Clinical Medicine. 2020;9(4):1179. DOI: 10.3390/jcm9041179
  35. Lin S, Li X, Zhang J, Zhang Y. Omentin-1: Protective impact on ischemic stroke via ameliorating atherosclerosis. Clinica Chimica Acta. 2021;517:31-40. DOI: 10.1016/j.cca.2021.02.004
  36. Pin E, Stratton S, Belluco C, Liotta L, Nagle R, Hodge KA, et al. A pilot study exploring the molecular architecture of the tumor microenvironment in human prostate cancer using laser capture microdissection and reverse phase protein microarray. Molecular Oncology. 2016;10(10):1585-94. DOI: 10.1016/j. molonc.2016.09.007
  37. Neveu B, Moreel X, Deschênes-Rompré M-P, Bergeron A, LaRue H, Ayari C, et al. IL-8 secretion in primary cultures of prostate cells is associated with prostate cancer aggressiveness. Research and reports in urology. 2014:27-34. DOI: 10.2147/RRU.S58643
  38. Chaiswing L, Weiss HL, Jayswal RD, Clair DKS, Kyprianou N. Profiles of radioresistance mechanisms in prostate cancer. Critical Reviews™ in Oncogenesis. 2018;23(1-2). DOI: 10.1615/CritRevOncog.2018025946
  39. Touvier M, Fezeu L, Ahluwalia N, Julia C, Charnaux N, Sutton A, et al. Association between prediagnostic biomarkers of inflammation and endothelial function and cancer risk: a nested case-control study. American journal of epidemiology. 2013;177(1):3-13. DOI: 10.1093/aje/kws359
  40. Yencilek F, Yildirim A, Yilmaz SG, Altinkilic EM, Dalan AB, Bastug Y, et al. Investigation of interleukin-1β polymorphisms in prostate cancer. Anticancer Research. 2015;35(11):6057-61.
  41. Thibodeau S, French A, McDonnell S, Cheville J, Middha S, Tillmans L, et al. Identification of candidate genes for prostate cancer-risk SNPs utilizing a normal prostate tissue eQTL data set. Nature communications. 2015;6(1):8653. DOI: 10.1038/ncomms9653
  42. Park M-J, Hyun M-H, Yang J-P, Yoon J-M, Park S. Effects of the interleukin-1β-511 C/T gene polymorphism on the risk of gastric cancer in the context of the relationship between race and H. pylori infection: a meta-analysis of 20,000 subjects. Molecular biology reports. 2015;42:119-34. DOI: 10.1007/s11033-014-3748-7
  43. Wang J, Shi Y, Wang G, Dong S, Yang D, Zuo X. The association between interleukin-1 polymorphisms and their protein expression in Chinese Han patients with breast cancer. Molecular Genetics & Genomic Medicine. 2019;7(8):e804. DOI: 10.1002/mgg3.804
  44. Urquidi V, Kim J, Chang M, Dai Y, Rosser CJ, Goodison S. CCL18 in a multiplex urine-based assay for the detection of bladder cancer. PLoS One. 2012;7(5):e37797. DOI: 10.1371/journal. pone.0037797
  45. Sun Z, Du C, Xu P, Miao C. Surgical trauma-induced CCL18 promotes recruitment of regulatory T cells and colon cancer progression. Journal of cellular physiology. 2019;234(4):4608-16. DOI: 10.1002/jcp.27245
  46. Wang L, Wang Y-x, Zhang D-z, Fang X-j, Sun P-s, Xue H-c. Let-7a mimic attenuates CCL18 induced breast cancer cell metastasis through Lin 28 pathway. Biomedicine & Pharmacotherapy. 2016;78:301-7. DOI: 10.1016/j.biopha.2016.01.028
  47. Wang Q, Tang Y, Yu H, Yin Q, Li M, Shi L, et al. CCL18 from tumor-cells promotes epithelial ovarian cancer metastasis via mTOR signaling pathway. Molecular Carcinogenesis. 2016;55(11):1688-99.. DOI: 10.1002/mc.22419
  48. Hou X, Zhang Y, Qiao H. CCL18 promotes the invasion and migration of gastric cancer cells via ERK1/2/NF-κB signaling pathway. Tumor Biology. 2016;37:641-51. DOI: 10.1007/s13277-015-3825-0
  49. Meng F, Li W, Li C, Gao Z, Guo K, Song S. CCL18 promotes epithelial-mesenchymal transition, invasion and migration of pancreatic cancer cells in pancreatic ductal adenocarcinoma. International journal of oncology. 2015;46(3):1109-20. DOI: 10.3892/ijo.2014.2794
  50. Su Y, Zhou Y, Sun Y-j, Wang Y-L, Yin J-y, Huang Y-j, et al. Macrophage-derived CCL18 promotes osteosarcoma proliferation and migration by upregulating the expression of UCA1. Journal of Molecular Medicine. 2019;97:49-61. DOI: 10.1007/s00109-018-1711-0
  51. She L, Qin Y, Wang J, Liu C, Zhu G, Li G, et al. Tumor-associated macrophages derived CCL18 promotes metastasis in squamous cell carcinoma of the head and neck. Cancer cell international. 2018;18(1):1-14. DOI: 10.1186/s12935-018-0620-1
  52. Schmid S, Csanadi A, Kozhuharov N, Tchudjin M, Kayser C, Rawluk J, et al. CC-chemokine ligand 18 is an independent prognostic marker in lymph node-positive non-small cell lung cancer. Anticancer Research. 2018;38(7):3913-8. DOI: 10.21873/anticanres.12676
  53. Chen G, Liang Y-x, Zhu J-g, Fu X, Chen Y-f, Mo R-j, et al. CC chemokine ligand 18 correlates with malignant progression of prostate cancer. BioMed research international. 2014;2014. . DOI: 10.1155/2014/230183
  54. Hong I-S. Stimulatory versus suppressive effects of GM-CSF on tumor progression in multiple cancer types. Experimental & molecular medicine. 2016;48(7):e242-e. DOI: 10.1038/emm.2016.64
  55. Rho CR, Park M-y, Kang S. Effects of granulocyte-macrophage colony-stimulating (GM-CSF) factor on corneal epithelial cells in corneal wound healing model. PLoS One. 2015;10(9):e0138020. DOI: 10.1371/journal.pone.0138020
  56. Urdinguio RG, Fernandez AF, Moncada-Pazos A, Huidobro C, Rodriguez RM, Ferrero C, et al. Immune-Dependent and Independent Antitumor Activity of GM-CSF Aberrantly Expressed by Mouse and Human Colorectal TumorsAntitumor Activity of GM-CSF in Colorectal Tumors. Cancer research. 2013;73(1):395-405. DOI: 10.1158/0008-5472.CAN-12-0806
  57. Ardekani MTF, Malekzadeh M, Hosseini SV, Bordbar E, Doroudchi M, Ghaderi A. Evaluation of pre-treatment serum levels of IL-7 and GM-CSF in colorectal cancer patients. International journal of molecular and cellular medicine. 2014;3(1):27.
  58. Zemanová M, Staňková B, Ušiakova Z, Tvrzická E, Pazdro A, Petruželka L, et al. Serum adiponectin relates to shortened overall survival in men with squamous cell esophageal cancer treated with preoperative concurrent chemoradiotherapy: A pilot study. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research. 2014;20:2351. DOI: 10.12659/MSM.891088
  59. Gartung A, Yang J, Sukhatme VP, Bielenberg DR, Fernandes D, Chang J, et al. Suppression of chemotherapy-induced cytokine/lipid mediator surge and ovarian cancer by a dual COX-2/sEH inhibitor. Proceedings of the National Academy of Sciences. 2019;116(5):1698-703. DOI: 10.1073/pnas.1803999116
  60. Haak VM, Huang S, Panigrahy D. Debris-stimulated tumor growth: a Pandora’s box? Cancer and Metastasis Reviews. 2021:1-11. DOI: 10.1007/s10555-021-09998-8
  61. Mendoza-Reinoso V, Baek DY, Kurutz A, Rubin JR, Koh AJ, McCauley LK, et al. Unique pro-inflammatory response of macrophages during apoptotic cancer cell clearance. Cells. 2020;9(2):429. DOI: 10.3390/cells9020429
  62. Morana O, Wood W, Gregory CD. The apoptosis paradox in cancer. International Journal of Molecular Sciences. 2022;23(3):1328. DOI: 10.3390/ijms23031328
  63. Middleton JD, Fehlman J, Sivakumar S, Stover DG, Hai T. Stress-inducible gene Atf3 dictates a dichotomous macrophage activity in chemotherapy-enhanced lung colonization. International journal of molecular sciences. 2021;22(14):7356. DOI: 10.3390/ijms22147356
  64. Peng S, Fu Y. FYN: emerging biological roles and potential therapeutic targets in cancer. Journal of Translational Medicine. 2023;21(1):84. DOI: 10.1186/s12967-023-03930-0
  65. Kaplanov I, Carmi Y, Kornetsky R, Shemesh A, Shurin GV, Shurin MR, et al. Blocking IL-1β reverses the immunosuppression in mouse breast cancer and synergizes withanti-PD-1 for tumor abrogation. Proceedings of the National Academy of Sciences. 2019;116(4):1361-9. DOI: 10.1073/pnas.1812266115
  66. Ghahartars M, Abtahi S, Zeinali Z, Fattahi MJ, Ghaderi A. Investigation of TNF-α and IL-6 levels in the sera of non-melanoma skin cancer patients. Iranian biomedical journal. 2021;25(2):88. DOI: 10.29252/ibj.25.2.88
  67. Fletcher R, Tong J, Risnik D, Leibowitz BJ, Wang Y-J, Concha-Benavente F, et al. Non-steroidal anti-inflammatory drugs induce immunogenic cell death in suppressing colorectal tumorigenesis. Oncogene. 2021;40(11):2035-50. DOI: 10.1038/s41388-021-01687-8
DOI: https://doi.org/10.2478/rrlm-2023-0031 | Journal eISSN: 2284-5623 | Journal ISSN: 1841-6624
Language: English
Page range: 291 - 304
Submitted on: Jul 19, 2023
Accepted on: Oct 13, 2023
Published on: Oct 28, 2023
Published by: Romanian Association of Laboratory Medicine
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Pshtiwan Abdullah Yousif, Parween Abdulsamad Ismail, published by Romanian Association of Laboratory Medicine
This work is licensed under the Creative Commons Attribution 4.0 License.