Have a personal or library account? Click to login
SPP1 is a biomarker of cervical cancer prognosis and involved in immune infiltration Cover

SPP1 is a biomarker of cervical cancer prognosis and involved in immune infiltration

By: Qian Guo,  Wei He,  Dan Nie,  Wuzhi Li and  Ping Zhan  
Open Access
|Jul 2022

References

  1. 1. Hu Z, Ma D. The precision prevention and therapy of HPV-related cervical cancer: new concepts and clinical implications. Cancer Med. 2018;7(10):5217-36. DOI: 10.1002/cam4.1501
  2. 2. Schiffman M, Castle PE, Jeronimo J, Rodriguez AC, Wacholder S. Human papillomavirus and cervical cancer. Lancet. 2007;370(9590):890-907. DOI: 10.1016/S0140-6736(07)61416-0
  3. 3. Lang-Schwarz C, Melcher B, Haumaier F, Lang-Schwarz K, Rupprecht T, Vieth M, et al. Budding and tumor-infiltrating lymphocytes - combination of both parameters predicts survival in colorectal cancer and leads to new prognostic subgroups. Hum Pathol. 2018;79:160-7. DOI: 10.1016/j.humpath.2018.05.01029787819
  4. 4. Adams S, Goldstein LJ, Sparano JA, Demaria S, Badve SS. Tumor infiltrating lymphocytes (TILs) improve prognosis in patients with triple negative breast cancer (TNBC). Oncoimmunology. 2015;4(9):e985930. DOI: 10.4161/2162402X.2014.985930457011226405612
  5. 5. Ikeda Y, Kiyotani K, Yew PY, Sato S, Imai Y, Yamaguchi R, et al. Clinical significance of T cell clonality and expression levels of immune-related genes in endometrial cancer. Oncol Rep. 2017;37(5):2603-10. DOI: 10.3892/or.2017.5536542828528358435
  6. 6. Ohno A, Iwata T, Katoh Y, Taniguchi S, Tanaka K, Nishio H, et al. Tumor-infiltrating lymphocytes predict survival outcomes in patients with cervical cancer treated with concurrent chemoradiotherapy. Gynecol Oncol. 2020;159(2):329-34. DOI: 10.1016/j.ygy-no.2020.07.106
  7. 7. Wu MY, Kuo TY, Ho HN. Tumor-infiltrating lymphocytes contain a higher proportion of FOXP3(+) T lymphocytes in cervical cancer. J Formos Med Assoc. 2011;110(9):580-6. DOI: 10.1016/j.jfma.2011.07.00521930068
  8. 8. Cochain C, Vafadarnejad E, Arampatzi P, Pelisek J, Winkels H, Ley K, et al. Single-Cell RNA-Seq Reveals the Transcriptional Landscape and Heterogeneity of Aortic Macrophages in Murine Atherosclerosis. Circ Res. 2018;122(12):1661-74. DOI: 10.1161/CIRCRESAHA.117.31250929545365
  9. 9. Xu C, Sun L, Jiang C, Zhou H, Gu L, Liu Y, et al. SPP1, analyzed by bioinformatics methods, promotes the metastasis in colorectal cancer by activating EMT pathway. Biomed Pharmacother. 2017;91:1167-77. DOI: 10.1016/j.biopha.2017.05.05628531945
  10. 10. Hao C, Cui Y, Hu MU, Zhi X, Zhang L, Li W, et al. OPN-a Splicing Variant Expression in Non-small Cell Lung Cancer and its Effects on the Bone Metastatic Abilities of Lung Cancer Cells In Vitro. Anticancer Res. 2017;37(5):2245-54. DOI: 10.21873/anticanres.1156128476789
  11. 11. Zeng B, Zhou M, Wu H, Xiong Z. SPP1 promotes ovarian cancer progression via Integrin beta1/FAK/AKT signaling pathway. Onco Targets Ther. 2018;11:1333-43. DOI: 10.2147/OTT.S154215585606329559792
  12. 12. Gothlin Eremo A, Lagergren K, Othman L, Montgomery S, Andersson G, Tina E. Evaluation of SPP1/osteopontin expression as predictor of recurrence in tamoxifen treated breast cancer. Sci Rep. 2020;10(1):1451. DOI: 10.1038/s41598-020-58323-w698962931996744
  13. 13. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020;48(W1):W509-W14. DOI: 10.1093/nar/gkaa407731957532442275
  14. 14. Chen Z, Guo P, Xie X, Yu H, Wang Y, Chen G. The role of tumour microenvironment: a new vision for cholangiocarcinoma. J Cell Mol Med. 2019;23(1):59-69. DOI: 10.1111/jcmm.13953630784430394682
  15. 15. Su J, Su L, Li D, Shuai O, Zhang Y, Liang H, et al. Antitumor Activity of Extract From the Sporoderm-Breaking Spore of Ganoderma lucidum: Restoration on Exhausted Cytotoxic T Cell With Gut Microbiota Remodeling. Front Immunol. 2018;9:1765. DOI: 10.3389/fimmu.2018.01765607921730108589
  16. 16. Sharonov GV, Serebrovskaya EO, Yuzhakova DV, Britanova OV, Chudakov DM. B cells, plasma cells and antibody repertoires in the tumour microenvironment. Nat Rev Immunol. 2020;20(5):294-307. DOI: 10.1038/s41577-019-0257-x31988391
  17. 17. Sica A, Schioppa T, Mantovani A, Allavena P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer. 2006;42(6):717-27. DOI: 10.1016/j.ejca.2006.01.00316520032
  18. 18. Kim R, Emi M, Tanabe K, Arihiro K. Tumor-driven evolution of immunosuppressive networks during malignant progression. Cancer Res. 2006;66(11):5527-36. DOI: 10.1158/0008-5472.CAN-05-412816740684
  19. 19. Ustyanovska Avtenyuk N, Visser N, Bremer E, Wiersma VR. The Neutrophil: The Underdog That Packs a Punch in the Fight against Cancer. Int J Mol Sci. 2020;21(21):7820. DOI: 10.3390/ijms21217820765993733105656
  20. 20. Kong W, Zhao G, Chen H, Wang W, Shang X, Sun Q, et al. Analysis of therapeutic targets and prognostic biomarkers of CXC chemokines in cervical cancer microenvironment. Cancer Cell Int. 2021;21(1):399. DOI: 10.1186/s12935-021-02101-9831741534321012
DOI: https://doi.org/10.2478/rrlm-2022-0028 | Journal eISSN: 2284-5623 | Journal ISSN: 1841-6624
Language: English
Page range: 281 - 292
Submitted on: Jan 23, 2022
|
Accepted on: Jun 3, 2022
|
Published on: Jul 18, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Qian Guo, Wei He, Dan Nie, Wuzhi Li, Ping Zhan, published by Romanian Association of Laboratory Medicine
This work is licensed under the Creative Commons Attribution 4.0 License.