Have a personal or library account? Click to login
Circulating amino acids as fingerprints of visceral adipose tissue independent of insulin resistance: a targeted metabolomic research in women Cover

Circulating amino acids as fingerprints of visceral adipose tissue independent of insulin resistance: a targeted metabolomic research in women

Open Access
|Oct 2021

References

  1. 1. World Health Organization. Obesity and overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. (accessed on 7 August 2021).
  2. 2. Ard JD. Obesity. In: Heimburger DC, Ard JD (Eds). Handbook of Clinical Nutrition, 4th ed. Mosby, 2006, pp. 371-400. DOI: 10.1016/B978-0-323-03952-9.50023-410.1016/B978-0-323-03952-9.50023-4
  3. 3. Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 2007 Jul;116(1):39-48. DOI: 10.1161/CIRCULATIONAHA.106.67535510.1161/CIRCULATIONAHA.106.67535517576866
  4. 4. Kuk JL, Katzmarzyk PT, Nichaman MZ, Church TS, Blair SN, Ross, R. Visceral fat is an independent predictor of all-cause mortality in men. Obesity (Silver Spring). 2006 Feb;14(2):336-41. DOI: 10.1038/ oby.2006.4310.1038/oby.2006.4316571861
  5. 5. Piché ME, Tchernof A, Després JP. Obesity Pheno-types, Diabetes, and Cardiovascular Diseases. Circ Res. 2020 May;126(11):1477-500. DOI: 10.1161/CIRCRESAHA.120.31610110.1161/CIRCRESAHA.120.31610132437302
  6. 6. Purnell JQ. Definitions, Classification, and Epidemiology of Obesity. In: Purnell J, Laferrere B (Eds.); Obesity. https://www.endotext.org/section/obesity/. (accessed August, 30 2021). DOI: 10.2310/IM.105110.2310/IM.1051
  7. 7. Neeland IJ, Boone SC, Mook-Kanamori DO, Ayers C, Smit RAJ, Tzoulaki I, et al. Metabolomics Profiling of Visceral Adipose Tissue: Results From MESA and the NEO Study. J Am Heart Assoc. 2019 May;8(9):e010810. DOI: 10.1161/JAHA.118.01081010.1161/JAHA.118.010810651208631017036
  8. 8. Libert DM, Nowacki AS, Natowicz MR. Metabolomic analysis of obesity, metabolic syndrome, and type 2 diabetes: amino acid and acylcarnitine levels change along a spectrum of metabolic wellness. PeerJ. 2018 Aug;6:e5410. DOI: 10.7717/peerj.541010.7717/peerj.5410612044330186675
  9. 9. Cernea S, Both E, Fodor A. The association of anthropometric parameters with markers of insulin and leptin secretion and resistance in type 2 diabetes mellitus. Rev Romana Med Lab. 2020;28(3):299-314. DOI:10.2478/ rrlm-2020-002810.2478/rrlm-2020-0028
  10. 10. Piro MC, Tesauro M, Lena AM, Gentileschi P, Sica G, Rodia G, et al. Free-amino acid metabolic profiling of visceral adipose tissue from obese subjects. Amino Acids. 2020 Aug;52(8):1125-37. DOI: 10.1007/s00726-020-02877-610.1007/s00726-020-02877-632757125
  11. 11. Fiehn O, Garvey WT, Newman JW, Lok KH, Hoppel CL, Adams SH. Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women. PLoS One. 2010 Dec;5(12):e15234. DOI: 10.1371/journal. pone.001523410.1371/journal.pone.0015234
  12. 12. Würtz P, Soininen P, Kangas AJ, Rönnemaa T, Lehtimäki T, Kähönen M, et al. Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care. 2013 Mar;36(3):648-55. DOI: 10.2337/dc12-089510.2337/dc12-0895357933123129134
  13. 13. Morris C, O’Grada C, Ryan M, Roche HM, Gibney MJ, Gibney ER, et al. The relationship between BMI and metabolomic profiles: a focus on amino acids. Proc Nutr Soc. 2012 Nov;71(4):634-8. DOI: 10.1017/ S002966511200069910.1017/S002966511200069922863201
  14. 14. She P, Van Horn C, Reid T, Hutson SM, Cooney RN, Lynch CJ. Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism. Am. J. Physiol. Am J Physiol Endocrinol Metab. 2007 Dec;293(6):E1552-63. DOI: 10.1152/ajpendo.00134.200710.1152/ajpendo.00134.2007276720117925455
  15. 15. Geidenstam N, Magnusson M, Danielsson APH, Gerszten RE, Wang TJ, Reinius LE, et al. Amino Acid Signatures to Evaluate the Beneficial Effects of Weight Loss. Int J Endocrinol. 2017;2017:6490473. DOI: 10.1155/2017/649047310.1155/2017/6490473541213828484491
  16. 16. Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, et al. HMDB 3.0--The Human Metabolome Database in 2013. Nucleic Acids Res. 2013 Jan;41:D801-7. DOI: 10.1093/nar/gks106510.1093/nar/gks1065353120023161693
  17. 17. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985 Jul;28(7):412-9. DOI: 10.1007/BF0028088310.1007/BF002808833899825
  18. 18. Bala CG, Rusu A, Ciobanu D, Bucsa C, Roman G. Amino Acid Signature of Oxidative Stress in Patients with Type 2 Diabetes: Targeted Exploratory Metabolomic Research. Antioxidants (Basel). 2021 Apr;10(4):610. DOI: 10.3390/antiox1004061010.3390/antiox10040610807155333921149
  19. 19. Liu X, Gao J, Chen J, Wang Z, Shi Q, Man H, et al. Identification of metabolic biomarkers in patients with type 2 diabetic coronary heart diseases based on metabolomic approach. Sci Rep. 2016 Jul;6:30785. DOI: 10.1038/srep3078510.1038/srep30785496576327470195
  20. 20. Lustgarten MS, Price LL, Phillips EM, Fielding RA. Serum glycine is associated with regional body fat and insulin resistance in functionally-limited older adults. PLoS One. 2013 Dec;8(12):e84034. DOI: 10.1371/ journal.pone.008403410.1371/journal.pone.0084034387714424391874
  21. 21. Boulet MM, Chevrier G, Grenier-Larouche T, Pelletier M, Nadeau M, Scarpa J, et al. Alterations of plasma metabolite profiles related to adipose tissue distribution and cardiometabolic risk. Am J Physiol Endocrinol Metab. 2015 Oct;309(8):E736-46. DOI: 10.1152/ajpendo.00231.201510.1152/ajpendo.00231.201526306599
  22. 22. Martin FP, Montoliu I, Collino S, Scherer M, Guy P, Tavazzi I, et al. Topographical body fat distribution links to amino acid and lipid metabolism in healthy obese women. PLoS One. 2013 Sep;8(9):e73445. DOI: 10.1371/journal.pone.007344510.1371/journal.pone.0073445377064024039943
  23. 23. Yamakado M, Tanaka T, Nagao K, Ishizaka Y, Mitushima T, Tani M, et al. Plasma amino acid profile is associated with visceral fat accumulation in obese Japanese subjects. Clin Obes. 2012 Feb;2(1-2):29-40. DOI: 10.1111/j.1758-8111.2012.00039.x10.1111/j.1758-8111.2012.00039.x
  24. 24. Papandreou C, García-Gavilán J, Camacho-Barcia L, Hansen TT, Sjödin A, Harrold JA, et al. Circulating Metabolites Associated with Body Fat and Lean Mass in Adults with Overweight/Obesity. Metabolites. 2021 May;11(5):317. DOI: 10.3390/metabo1105031710.3390/metabo11050317
  25. 25. Flores-Guerrero JL, Osté MCJ, Kieneker LM, Gruppen EG, Wolak-Dinsmore J, Otvos JD, et al. Plasma Branched-Chain Amino Acids and Risk of Incident Type 2 Diabetes: Results from the PREVEND Prospective Cohort Study. J Clin Med. 2018 Dec;7(12):513. DOI: 10.3390/jcm712051310.3390/jcm7120513
  26. 26. Tobias DK, Lawler PR, Harada PH, Demler OV, Ridker PM, Manson JE, et al. Circulating Branched-Chain Amino Acids and Incident Cardiovascular Disease in a Prospective Cohort of US Women. Circ Genom Precis Med. 2018 Apr;11(4):e002157. DOI: 10.1161/CIRCGEN.118.00215710.1161/CIRCGEN.118.002157
  27. 27. Yang P, Hu W, Fu Z, Sun L, Zhou Y, Gong Y, et al. The positive association of branched-chain amino acids and metabolic dyslipidemia in Chinese Han population. Lipids Health Dis. 2016 Jul;15:120. DOI: 10.1186/ s12944-016-0291-710.1186/s12944-016-0291-7
  28. 28. Shah SH, Kraus WE, Newgard CB. Metabolomic profiling for the identification of novel biomarkers and mechanisms related to common cardiovascular diseases: form and function. Circulation. 2012 Aug;126(9):1110-20. DOI: 10.1161/CIRCULATION-AHA.111.06036810.1161/CIRCULATIONAHA.111.060368
  29. 29. Hellmuth C, Kirchberg FF, Lass N, Harder U, Peissner W, Koletzko B, et al. Tyrosine Is Associated with Insulin Resistance in Longitudinal Metabolomic Profiling of Obese Children. J Diabetes Res. 2016;2016:2108909. DOI: 10.1155/2016/210890910.1155/2016/2108909
  30. 30. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011 Apr;17(4):448-53. DOI: 10.1038/nm.230710.1038/nm.2307
  31. 31. El Hafidi M, Pérez I, Zamora J, Soto V, Carvajal-Sandoval G, Ba-os G. Glycine intake decreases plasma free fatty acids, adipose cell size, and blood pressure in sucrose-fed rats. Am J Physiol Regul Integr Comp Physiol. 2004 Dec;287(6):R1387-93. DOI: 10.1152/ ajpregu.00159.200410.1152/ajpregu.00159.2004
  32. 32. Alvarado-Vásquez N, Zamudio P, Cerón E, Vanda B, Zenteno E, Carvajal-Sandoval G. Effect of glycine in streptozotocin-induced diabetic rats. Comp. Biochem. Physiol. C. Comp Biochem Physiol C Toxicol Pharmacol. 2003 Apr;134(4):521-7. DOI: 10.1016/S1532-0456(03)00046-210.1016/S1532-0456(03)00046-2
  33. 33. Gannon MC, Nuttall JA, Nuttall FQ. The metabolic response to ingested glycine. Am J Clin Nutr. 2002 Dec;76(6):1302-7. DOI: 10.1093/ajcn/76.6.130210.1093/ajcn/76.6.130212450897
  34. 34. Cruz M, Maldonado-Bernal C, Mondragón-Gonzalez R, Sanchez-Barrera R, Wacher NH, Carvajal-Sandoval G, et al. Glycine treatment decreases proinflammatory cytokines and increases interferon-gamma in patients with type 2 diabetes. J Endocrinol Invest. 2008 Aug;31(8):694-9. DOI: 10.1007/BF0334641710.1007/BF03346417
  35. 35. Sekhar RV, McKay SV, Patel SG, Guthikonda AP, Reddy VT, Balasubramanyam A, et al. Glutathione synthesis is diminished in patients with uncontrolled diabetes and restored by dietary supplementation with cysteine and glycine. Diabetes Care. 2011 Jan;34(1):162-7. DOI: 10.2337/dc10-100610.2337/dc10-1006
  36. 36. Lackey DE, Lynch CJ, Olson KC, Mostaedi R, Ali M, Smith WH, et al. Regulation of adipose branched-chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity. Am J Physiol Endocrinol Metab. 2013 Jun;304(11):E1175-87. DOI: 10.1152/ajpendo.00630.201210.1152/ajpendo.00630.2012
  37. 37. She P, Van Horn C, Reid T, Hutson SM, Cooney RN, Lynch CJ. Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism. Am J Physiol Endocrinol Metab. 2007 Dec;293(6):E1552-63. DOI: 10.1152/ajpendo.00134.200710.1152/ajpendo.00134.2007
  38. 38. Herman MA, She P, Peroni OD, Lynch CJ, Kahn BB. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels. J Biol Chem. 2010 Apr;285(15):11348-56. DOI: 10.1074/jbc. M109.07518410.1074/jbc
  39. 39. Pietiläinen KH, Naukkarinen J, Rissanen A, Saharinen J, Ellonen P, Keränen H, et al. Global transcript profiles of fat in monozygotic twins discordant for BMI: pathways behind acquired obesity. PLoS Med. 2008 Mar;5(3):e51. DOI: 10.1371/journal.pmed.005005110.1371/journal.pmed.0050051
  40. 40. Samiec PS, Drews-Botsch C, Flagg EW, Kurtz JC, Sternberg P Jr, Reed RL, et al. Glutathione in human plasma: decline in association with aging, age-related macular degeneration, and diabetes. Free Radic Biol Med. 1998 Mar;24(5):699-704. DOI: 10.1016/S0891-5849(97)00286-410.1016/S0891-5849(97)00286-4
  41. 41. Candi E, Tesauro M, Cardillo C, Lena AM, Schinzari F, Rodia G, et al. Metabolic profiling of visceral adipose tissue from obese subjects with or without metabolic syndrome. Biochem J. 2018 Mar;475(5):1019-35. DOI: 10.1042/BCJ2017060410.1042/BCJ2017060429437994
DOI: https://doi.org/10.2478/rrlm-2021-0033 | Journal eISSN: 2284-5623 | Journal ISSN: 1841-6624
Language: English
Page range: 439 - 451
Submitted on: Sep 10, 2021
|
Accepted on: Oct 5, 2021
|
Published on: Oct 22, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Andrada A. Muresan, Adriana Rusu, Raluca M. Pop, Camelia L. Vonica, Nicolae Hancu, Corina Bocsan, Carmen Socaciu, Cornelia G. Bala, Gabriela Roman, published by Romanian Association of Laboratory Medicine
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.