References
- 1. Zhou P, Yang X Lou, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature.2020;579 (7798):270-273. DOI: 10.1038/s41586-020-2012-710.1038/s41586-020-2012-7709541832015507
- 2. World Health Organization (WHO). Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV). Geneva, Switzerland. 2020 (accessed 2021 Feb 14).
- 3. Peeri NC, Shrestha N, Rahman MS, Zaki R, Tan Z, Bibi S, et al. The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: what lessons have we learned? Int J Epidemiol. 2020;49(3):717-726. DOI: 10.1093/ije/dyaa03310.1093/ije/dyaa033719773432086938
- 4. Worldometer. Coronavirus Update (Live): Cases and Deaths from COVID-19 Virus Pandemic. Worldometers. 2021(accessed 2021 June 10).
- 5. Azkur AK, Akdis M, Azkur D, Sokolowska M, van de Veen W, Brüggen MC, et al. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy: European Journal of Allergy and Clinical Immunology. 2020;75:1564-1581. DOI: 10.1111/all.1436410.1111/all.14364727294832396996
- 6. Dong M, Zhang J, Ma X, Tan J, Chen L, Liu S, et al. ACE2, TMPRSS2 distribution and extrapulmonary organ injury in patients with COVID-19. Biomedicine and Pharmacotherapy. 2020;131:110678 DOI: 10.1016/j.biopha.2020.11067810.1016/j.biopha.2020.110678744494232861070
- 7. Blot M, Bour JB, Quenot JP, Bourredjem A, Nguyen M, Guy J, et al. The dysregulated innate immune response in severe COVID-19 pneumonia that could drive poorer outcome. J Transl Med. 2020;18(1):457. DOI: 10.1186/s12967-020-02646-910.1186/s12967-020-02646-9771126933272291
- 8. Campbell K, Steiner G, Wells D, Ribas A, Kalbasi A. Prioritization of SARS-CoV-2 epitopes using a pan-HLA and global population inference approach. bioRxiv.2020; 2020.03.30.016931. DOI: 10.1101/2020.03.30.01693110.1101/2020.03.30.016931723905532511325
- 9. Georgescu AM, Banescu C, Azamfirei R, Hutanu A, Moldovan V, Badea I, et al. Evaluation of TNF-α genetic polymorphisms as predictors for sepsis susceptibility and progression. BMC Infect Dis. 2020;20(1):1-11. DOI: 10.1186/s12879-020-4910-610.1186/s12879-020-4910-6707175432171247
- 10. Georgescu AM, Bănescu C, Badea I, Moldovan V, Huțanu A, Voidăzan S, et al. IL-6 gene polymorphisms and sepsis in ICU adult romanian patients: a prospective study. Rev Rom Med Lab. 2017;25(1):75-89. DOI: 10.1515/rrlm-2016-004410.1515/rrlm-2016-0044
- 11. Forbester JL, Humphreys IR. Genetic influences on viral-induced cytokine responses in the lung. Mucosal Immunology. 2021;14:14-25. DOI: 10.1038/s41385-020-00355-610.1038/s41385-020-00355-6765861933184476
- 12. Netea MG, Giamarellos-Bourboulis EJ, Domínguez-Andrés J, Curtis N, van Crevel R, van de Veerdonk FL, et al. Trained Immunity: a Tool for Reducing Susceptibility to and the Severity of SARS-CoV-2 Infection. Cell. 2020;181:969-77. DOI: 10.1016/j.cell.2020.04.04210.1016/j.cell.2020.04.042719690232437659
- 13. Aryal S. Anatomical Barriers of Immune System-Skin and Mucus. Microbe Notes Online Microbiology and Biology Study Notes. https://microbenotes.com/anatomical-barriers-of-immune-system-skin-and-mucus (accessed May 10, 2021)
- 14. Yousef H, Sharma S. Anatomy, Skin, Epidermis. Stat-Pearls. StatPearls Publishing; 2018. http://www.ncbi.nlm.nih.gov/pubmed/29262154
- 15. Rahimi H, Tehranchinia Z. A Comprehensive Review of Cutaneous Manifestations Associated with COVID-19. BioMed Research International. 2020:1236520. DOI: 10.1155/2020/123652010.1155/2020/1236520736423232724793
- 16. Mawhirt SL, Frankel D, Diaz AM. Cutaneous Manifestations in Adult Patients with COVID-19 and Dermato-logic Conditions Related to the COVID-19 Pandemic in Health Care Workers. Current Allergy and Asthma Reports. 2020;20:75 DOI: 10.1007/s11882-020-00974-w10.1007/s11882-020-00974-w754973533047260
- 17. Rose-Sauld S, Dua A. COVID toes and other cutaneous manifestations of COVID-19. Journal of Wound Care. 2020;29:486-487. DOI: 10.12968/jowc.2020.29.9.48610.12968/jowc.2020.29.9.48632924822
- 18. Elgarhy LH, Salem ML. Could injured skin be a reservoir for SARS-CoV-2 virus spread? Clinics in Dermatology. 2020;38:762-763. DOI: 10.1016/j.clindermatol.2020.06.00410.1016/j.clindermatol.2020.06.004728273733341211
- 19. Medina-Enríquez MM, Lopez-León S, Carlos-Escalante JA, Aponte-Torres Z, Cuapio A, Wegman-Ostrosky T. ACE2: the molecular doorway to SARS-CoV-2. Cell and Bioscience. 2020;10:1-17. DOI: 10.1186/s13578-020-00519-810.1186/s13578-020-00519-8777280133380340
- 20. Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. Single-Cell RNA Expression Profiling of ACE2, the Receptor of SARS-CoV-2. Vol. 202, American Journal of Respiratory and Critical Care Medicine. 2020;202:756-759. DOI: 10.1164/rccm.202001-0179LE10.1164/rccm.202001-0179LE746241132663409
- 21. Yao XH, Li TY, He ZC, Ping YF, Liu HW, Yu SC, et al. A pathological report of three COVID-19 cases by minimally invasive autopsies. Chinese J Pathol. 2020;49(5):411-417.
- 22. Zhang Y, Chen Y, Li Y, Huang F, Luo B, Yuan Y, et al. The ORF8 Protein of SARS-CoV-2 Mediates Immune Evasion through Down-regulating MHC-I. PNAS. 2021; 118(23): e2024202118 DOI: 10.1073/pnas.202420211810.1073/pnas.2024202118820191934021074
- 23. Nguyen A, David JK, Maden SK, Wood MA, Weeder BR, Nellore A, et al. Human Leukocyte Antigen Susceptibility Map for Severe Acute Respiratory Syndrome Coronavirus 2. J Virol. 2020;94(13): e00510-20 DOI: 10.1128/JVI.00510-2010.1128/JVI.00510-20730714932303592
- 24. Borges RC, Hohmann MS, Borghi SM. Dendritic cells in COVID-19 immunopathogenesis: insights for a possible role in determining disease outcome. International Reviews of Immunology. 2021;40(1-2):108-125 DOI: 10.1080/08830185.2020.184419510.1080/08830185.2020.184419533191813
- 25. Wang K, Chen W, Zhou Y-S, Lian J-Q, Zhang Z, Du P, et al. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. Sig Transduct Target Ther. 2020;5:283. DOI: 10.1038/s41392-020-00426-x10.1038/s41392-020-00426-x771489633277466
- 26. Coutard B, Valle C, de Lamballerie X, Canard B, Seidah NG, Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Anti-viral Res. 2020;176:104742. DOI: 10.1016/j.antiviral.2020.10474210.1016/j.antiviral.2020.104742711409432057769
- 27. Yang D, Chu H, Hou Y, Chai Y, Shuai H, Lee AC-Y, et al. Attenuated Interferon and Proinflammatory Response in SARS-CoV-2-Infected Human Dendritic Cells Is Associated With Viral Antagonism of STAT1 Phosphorylation. J Infect Dis. 2020;222(5):734-45. DOI: 10.1093/infdis/jiaa35610.1093/infdis/jiaa356733779332563187
- 28. Zhou R, To KKW, Wong YC, Liu L, Zhou B, Li X, et al. Acute SARS-CoV-2 Infection Impairs Dendritic Cell and T Cell Responses. Immunity. 2020;53(4):864-877. e5. DOI: 10.1016/j.immuni.2020.07.02610.1016/j.immuni.2020.07.026740267032791036
- 29. Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Møller R, et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell. 2020;181(5):1036-1045.e9. DOI: 10.1016/j.cell.2020.04.02610.1016/j.cell.2020.04.026722758632416070
- 30. Zhou J, Chu H, Li C, Wong BHY, Cheng ZS, Poon VKM, et al. Active replication of middle east respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: Implications for pathogenesis. J Infect Dis. 2014; 209(9):1331-1342. DOI: 10.1093/infdis/jit50410.1093/infdis/jit504710735624065148
- 31. Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124(2):188-195. DOI: 10.1182/blood-2014-05-55272910.1182/blood-2014-05-552729409368024876563
- 32. Magro G. SARS-CoV-2 and COVID-19: Is interleukin-6 (IL-6) the ‘culprit lesion’ of ARDS onset? What is there besides Tocilizumab? SGP130Fc. Cytokine: X. 2020;(2): 100029. DOI: 10.1016/j.cytox.2020.10002910.1016/j.cytox.2020.100029722464932421092
- 33. Garbers C, Monhasery N, Aparicio-Siegmund S, Lokau J, Baran P, Nowell MA, et al. The interleukin-6 receptor Asp358Ala single nucleotide polymorphism rs2228145 confers increased proteolytic conversion rates by ADAM proteases. Biochim Biophys Acta - Mol Basis Dis. 2014;1842(9):1485-1494. DOI: 10.1016/j.bbadis.2014.05.01810.1016/j.bbadis.2014.05.01824878322
- 34. Rose-John S. Il-6 trans-signaling via the soluble IL-6 receptor: Importance for the proinflammatory activities of IL-6. Int J Biol Sci. 2012;8(9):1237-1247. DOI: 10.7150/ijbs.498910.7150/ijbs.4989349144723136552
- 35. Martinez FO, Combes TW, Orsenigo F, Gordon S. Monocyte activation in systemic Covid-19 infection: Assay and rationale. EBioMedicine. 2020;59:102964 DOI: 10.1016/j.ebiom.2020.10296410.1016/j.ebiom.2020.102964745645532861199
- 36. Zhou Y, Fu B, Zheng X, Wang D, Zhao C, Qi Y, et al. Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients. National Science Review. 2020;7(6):998-1002. DOI: 10.1093/nsr/nwaa04110.1093/nsr/nwaa041710800534676125
- 37. Zhang N, Czepielewski RS, Jarjour NN, Erlich EC, Esaulova E, Saunders BT, et al. Expression of factor V by resident macrophages boosts host defense in the peritoneal cavity. J Exp Med. 2019;216(6):1291-1300. DOI: 10.1084/jem.2018202410.1084/jem.20182024654786631048328
- 38. Boumaza A, Gay L, Mezouar S, Diallo AB, Michel M, Desnues B, et al. Monocytes and macrophages, targets of SARS-CoV-2: The clue for Covid-19 immunoparalysis. J Infect Dis. 2021:jiab044. DOI: 10.1093/infdis/jiab04410.1093/infdis/jiab044792881733493287
- 39. Feng Z, Diao B, Wang R, Wang G, Wang C, Tan Y, et al. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly decimates human spleens and lymph nodes. medRx-iv.2020. DOI: 10.1101/2020.03.27.20045427 DOI: 10.1101/2020.03.27.2004542710.1101/2020.03.27.20045427
- 40. Park MD. Macrophages: a Trojan horse in COVID-19? Nat Rev Immunol. 2020;20(6):351. DOI: 10.1038/s41577-020-0317-210.1038/s41577-020-0317-2718693032303696
- 41. Marcenaro E, Carlomagno S, Pesce S, Moretta A, Sivori S. Bridging innate NK cell functions with adaptive immunity. Adv Exp Med Biol. Adv Exp Med Biol. 2011;780: 45-55. DOI: 10.1007/978-1-4419-5632-3_510.1007/978-1-4419-5632-3_521842364
- 42. Molgora M, Supino D, Mavilio D, Santoni A, Moretta L, Mantovani A, et al. The yin-yang of the interaction between myelomonocytic cells and NK cells. Scand J Immunol. 2018;88(3):e12705 DOI: 10.1111/sji.1270510.1111/sji.12705648539430048003
- 43. Zhao X-N, You Y, Wang G-L, Gao H-X, Duan L-J, Zhang S-B, et al. Longitudinal single-cell immune profiling revealed distinct innate immune response in asymptomatic COVID-19 patients. bioRxiv. 2020:2020.09.02.276865. DOI: 10.1101/2020.09.02.27686510.1101/2020.09.02.276865
- 44. Pinto D, Park Y-J, Beltramello M, Walls A, Tortorici MA, Bianchi S, et al. Structural and functional analysis of a potent sarbecovirus neutralizing antibody. bioRxiv. 2020; 10.1101/2020.04.07.023903 DOI: 10.2210/pdb-6ws6/pdb
- 45. Li T, Qiu Z, Zhang L, Han Y, He W, Liu Z, et al. Significant Changes of Peripheral T Lymphocyte Subsets in Patients with Severe Acute Respiratory Syndrome. J Infect Dis. 2004;189(4):648-651. DOI: 10.1086/38153510.1086/381535710994614767818
- 46. Zheng M, Gao Y, Wang G, Song G, Liu S, Sun D, et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol. 2020;17:533-535. DOI: 10.1038/s41423-020-0402-210.1038/s41423-020-0402-2709185832203188
- 47. Bao C, Tao X, Cui W, Hao Y, Zheng S, Yi B, et al. Natural killer cells associated with SARS-CoV-2 viral RNA shedding, antibody response and mortality in COVID-19 patients. Exp Hematol Oncol. 2021;10(1):5 DOI: 10.1186/s40164-021-00199-110.1186/s40164-021-00199-1783928633504359
- 48. Galani IE, Andreakos E. Neutrophils in viral infections: Current concepts and caveats. J Leukoc Biol. 2015;98(4):557-564. DOI: 10.1189/jlb.4VMR1114-555R10.1189/jlb.4VMR1114-555R26160849
- 49. Borges L, Pithon-Curi TC, Curi R, Hatanaka E. COVID-19 and Neutrophils: The relationship between hyperinflammation and neutrophil extracellular traps. Mediators of Inflammation. 2020; 2020: 8829674. DOI: 10.1155/2020/882967410.1155/2020/8829674773240833343232
- 50. Barr FD, Ochsenbauer C, Wira CR, Rodriguez-Garcia M. Neutrophil extracellular traps prevent HIV infection in the female genital tract. Mucosal Immunol. 2018;11(5):1420-1428. DOI: 10.1038/s41385-018-0045-010.1038/s41385-018-0045-0616217329875403
- 51. Saitoh T, Komano J, Saitoh Y, Misawa T, Takahama M, Kozaki T, et al. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe. 2012;12(1):109-116. DOI: 10.1016/j.chom.2012.05.01510.1016/j.chom.2012.05.01522817992
- 52. He Y, Yang FY, Sun EW. Neutrophil Extracellular Traps in Autoimmune Diseases. Chin Med J. 2018;131:1513-1519. DOI: 10.4103/0366-6999.23512210.4103/0366-6999.235122603268829941703
- 53. Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M, Madison JA, et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020;5(11);e138999 DOI: 10.1101/2020.04.30.2008673610.1101/2020.04.30.20086736727423432511553
- 54. Thierry AR, Roch B. SARS-CoV2 may evade innate immune response, causing uncontrolled neutrophil extracellular traps formation and multi-organ failure. Clin Sci (Lond). 2020;134:1295-1300. DOI: 10.1042/CS2020053110.1042/CS2020053132543703
- 55. Shi Y, Gauer JS, Baker SR, Philippou H, Connell SD, Ariëns RAS. Neutrophils can promote clotting via FXI and impact clot structure via neutrophil extracellular traps in a distinctive manner in vitro. Sci Rep. 2021;11(1):1718. DOI: 10.1038/s41598-021-81268-710.1038/s41598-021-81268-7781402833462294
- 56. Fuchs TA, Kremer Hovinga JA, Schatzberg D, Wagner DD, Lämmle B. Circulating DNA and myeloperoxidase indicate disease activity in patients with thrombotic microangiopathies. Blood. 2012;120(6):1157-1164. DOI: 10.1182/blood-2012-02-41219710.1182/blood-2012-02-412197341871222611154
- 57. Pfeiler S, Stark K, Massberg S, Engelmann B. Propagation of thrombosis by neutrophils and extracellular nucleosome networks. Haematologica. 2017;102(2):206-213. DOI: 10.3324/haematol.2016.14247110.3324/haematol.2016.142471528692927927771
- 58. Stiel L, Mayeur-Rousse C, Helms J, Meziani F, Mauvieux L. First visualization of circulating neutrophil extracellular traps using cell fluorescence during human septic shock-induced disseminated intravascular coagulation. Thromb Res. 2019;183:153-158. DOI: 10.1016/j.thromres.2019.09.03610.1016/j.thromres.2019.09.03631678710
- 59. Sabbione F, Keitelman IA, Iula L, Ferrero M, Giordano MN, Baldi P, et al. Neutrophil Extracellular Traps Stimulate Proinflammatory Responses in Human Airway Epithelial Cells. J Innate Immun. 2017;9(4):387-402. DOI: 10.1159/00046029310.1159/000460293673890128467984
- 60. Barbu EA, Mendelsohn L, Samsel L, Thein SL. Pro-inflammatory cytokines associate with NETosis during sickle cell vaso-occlusive crises. Cytokine. 2020;127:154933. DOI: 10.1016/j.cyto.2019.15493310.1016/j.cyto.2019.154933841974431778959
- 61. Cheng OZ, Palaniyar N. NET balancing: A problem in inflammatory lung diseases. Front Immunol. 2013;4:1. DOI: 10.3389/fimmu.2013.0000110.3389/fimmu.2013.00001355339923355837
- 62. Lee KH, Kronbichler A, Park DDY, Park YM, Moon H, Kim H, et al. Neutrophil extracellular traps (NETs) in autoimmune diseases: A comprehensive review. Autoimmun Rev. 2017;16(11):1160-1173. DOI: 10.1016/j.autrev.2017.09.01210.1016/j.autrev.2017.09.01228899799
- 63. Lin A, Loré K. Granulocytes: New members of the antigen-presenting cell family. Front Immunol. 2017;8:1781 DOI: 10.3389/fimmu.2017.0178110.3389/fimmu.2017.01781573222729321780
- 64. Leliefeld PHC, Koenderman L, Pillay J. How neutrophils shape adaptive immune responses. Front Immunol. 2015;6:471. DOI: 10.3389/fimmu.2015.0047110.3389/fimmu.2015.00471456841026441976
- 65. Mukherjee M, Lacy P, Ueki S. Eosinophil extracellular traps and inflammatory pathologies-untangling the web! Front Immunol. 2018;9:2763. DOI: 10.3389/fimmu.2018.0276310.3389/fimmu.2018.02763627523730534130
- 66. Nagase H, Okugawa S, Ota Y, Yamaguchi M, Tomizawa H, Matsushima K, et al. Expression and Function of Toll-Like Receptors in Eosinophils: Activation by Toll-Like Receptor 7 Ligand. J Immunol. 2003;171(8):3977-3982. DOI: 10.4049/jimmunol.171.8.397710.4049/jimmunol.171.8.397714530316
- 67. Lindsley AW, Schwartz JT, Rothenberg ME. Eosinophil responses during COVID-19 infections and coronavirus vaccination. J Allergy Clin Immunol. 2020;146(1):1-7. DOI: 10.1016/j.jaci.2020.04.02110.1016/j.jaci.2020.04.021719472732344056
- 68. Du Y, Tu L, Zhu P, Mu M, Wang R, Yang P, et al. Clinical features of 85 fatal cases of COVID-19 from Wuhan: A retrospective observational study. Am J Respir Crit Care Med. 2020;201(11):1372-1379. DOI: 10.1164/rccm.202003-0543OC10.1164/rccm.202003-0543OC725865232242738
- 69. Zhang J, Dong X, Cao Y, Yuan Y, Yang Y, Yan Y, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020;75(7):1730-1741. DOI: 10.1111/all.1423810.1111/all.1423832077115
- 70. Borgne P Le, Vuillaume LA, Alamé K, Lefebvre F, Chabrier S, Bérard L, et al. Do blood eosinophils predict in-hospital mortality or severity of disease in SARS-CoV-2 infection? A retrospective multicenter study. Microorganisms. 2021;9(2):334. DOI: 10.3390/microorganisms902033410.3390/microorganisms9020334791491633567583
- 71. Xia Z. Eosinopenia as an early diagnostic marker of COVID-19 at the time of the epidemic. E Clinical Medicine. 2020;23:100398 DOI: 10.1016/j.eclinm.2020.10039810.1016/j.eclinm.2020.100398729984832572392
- 72. Gralinski LE, Sheahan TP, Morrison TE, Menachery VD, Jensen K, Leist SR, et al. Complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis. MBio. 2018;9(5):e01753-18 DOI: 10.1128/mBio.01753-1810.1128/mBio.01753-18617862130301856
- 73. Gao T, Hu M, Zhang X, Li H, Zhu L, Liu H, et al. Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2-mediated complement over-activation. medRxiv. 2020:2020.03.29.20041962. DOI: 10.1101/2020.03.29.2004196210.1101/2020.03.29.20041962
- 74. Yuen J, Pluthero FG, Douda DN, Riedl M, Cherry A, Ulanova M, et al. NETosing neutrophils activate complement both on their own NETs and bacteria via alternative and non-alternative pathways. Front Immunol. 2016;7:137. DOI: 10.3389/fimmu.2016.0013710.3389/fimmu.2016.00137483163627148258
- 75. Java A, Apicelli AJ, Kathryn Liszewski M, Coler-Reilly A, Atkinson JP, Kim AHJ, et al. The complement system in COVID-19: Friend and foe? JCI Insight. 2020;5(15):e140711. DOI: 10.1172/jci.insight.14071110.1172/jci.insight.140711745506032554923
- 76. Kurosawa S, Stearns-Kurosawa DJ. Complement, thrombotic microangiopathy and disseminated intravascular coagulation. J Intensive Care. 2014;2(1):65 DOI: 10.1186/s40560-014-0061-410.1186/s40560-014-0061-4433618025705421
- 77. Zhang L, Yan X, Fan Q, Liu H, Liu X, Liu Z, et al. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J Thromb Haemost. 2020;18(6):1324-1329. DOI: 10.1111/jth.1485910.1111/jth.14859726473032306492
- 78. Khanmohammadi S, Rezaei N. Role of Toll-like receptors in the pathogenesis of COVID-19. J Med Virol. 2021;93(5):2735-2739. DOI: 10.1002/jmv.2682610.1002/jmv.26826801426033506952
- 79. Choudhury A, Mukherjee S. In silico studies on the comparative characterization of the interactions of SARS-CoV-2 spike glycoprotein with ACE-2 receptor homologs and human TLRs. J Med Virol. 2020;92(10):2105-2113. DOI: 10.1002/jmv.2598710.1002/jmv.25987726766332383269
- 80. Moreno-Eutimio MA, López-Macías C, Pastelin-Palacios R. Bioinformatic analysis and identification of single-stranded RNA sequences recognized by TLR7/8 in the SARS-CoV-2, SARS-CoV, and MERS-CoV genomes. Microbes Infect. 2020;22(4-5):226-229. DOI: 10.1016/j.micinf.2020.04.00910.1016/j.micinf.2020.04.009719207432361001
- 81. Cicco S, Cicco G, Racanelli V, Vacca A. Neutrophil Extracellular Traps (NETs) and Damage-Associated Molecular Patterns (DAMPs): Two Potential Targets for COVID-19 Treatment. Mediators of Inflammation 2020; 2020:7527953 DOI: 10.1155/2020/752795310.1155/2020/7527953736622132724296
- 82. Bezemer GFG, Garssen J. TLR9 and COVID-19: A Multidisciplinary Theory of a Multifaceted Therapeutic Target. Front Pharmacol. 2021;11:601685. DOI: 10.3389/fphar.2020.60168510.3389/fphar.2020.601685784458633519463
- 83. Fallerini C, Daga S, Mantovani S, Benetti E, Picchiotti N, Francisci D, et al. Association of toll-like receptor 7 variants with life-threatening COVID-19 disease in males: Findings from a nested case-control study. eLife. 2021;10:e67569
- 84. Li Y, Jerkic M, Slutsky AS, Zhang H. Molecular mechanisms of sex bias differences in COVID-19 mortality. Crit Care. 2020;24:405. DOI: 10.1186/s13054-020-03118-810.1186/s13054-020-03118-8734725632646459
- 85. Portela Sousa C, Brites C. Immune response in SARS-CoV-2 infection: the role of interferons type I and type III. Braz J Infect Dis. 2020;24(5):428-433. DOI: 10.1016/j.bjid.2020.07.01110.1016/j.bjid.2020.07.011744881732866437
- 86. Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Smith N, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. 2020;369(6504):718-724. DOI: 10.1126/science.abc602710.1126/science.abc6027740263232661059
- 87. Contoli M, Papi A, Tomassetti L, Rizzo P, Vieceli Dalla Sega F, Fortini F, et al. Blood Interferon-α Levels and Severity, Outcomes, and Inflammatory Profiles in Hospitalized COVID-19 Patients. Front Immunol. 2021;12:648004. DOI: 10.3389/fimmu.2021.64800410.3389/fimmu.2021.648004798545833767713
- 88. Nice TJ, Robinson BA, Van Winkle JA. The Role of Interferon in Persistent Viral Infection: Insights from Murine Norovirus. Trends in Microbiol. 2018;26(6):510-524. DOI: 10.1016/j.tim.2017.10.01010.1016/j.tim.2017.10.010595777829157967
- 89. Channappanavar R, Fehr AR, Vijay R, Mack M, Zhao J, Meyerholz DK, et al. Dysregulated Type I Interferon and Inflammatory Monocyte-Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice. Cell Host Microbe. 2016:19(2):181-193. DOI: 10.1016/j.chom.2016.01.00710.1016/j.chom.2016.01.007475272326867177
- 90. Taefehshokr N, Taefehshokr S, Hemmat N, Heit B. Covid-19: Perspectives on Innate Immune Evasion. Front Immunol. 2020;11:580641 DOI: 10.3389/fimmu.2020.58064110.3389/fimmu.2020.580641755424133101306
- 91. Major J, Crotta S, Llorian M, McCabe TM, Gad HH, Priestnall SL, et al. Type I and III interferons disrupt lung epithelial repair during recovery from viral infection. Science. 2020;369(6504):712-717. DOI: 10.1126/science.abc206110.1126/science.abc2061729250032527928
- 92. Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann HH, Zhang Y, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4585.
- 93. Liu QQ, Cheng A, Wang Y, Li H, Hu L, Zhao X, et al. Cytokines and their relationship with the severity and prognosis of coronavirus disease 2019 (COVID-19): A retrospective cohort study. BMJ Open. 2020;10:e041471. DOI: 10.1136/bmjopen-2020-04147110.1136/bmjopen-2020-041471770542633257492
- 94. Cauchois R, Koubi M, Delarbre D, Manet C, Carvelli J, Blasco VB, et al. Early IL-1 receptor blockade in severe inflammatory respiratory failure complicating COVID-19. PNAS. 2020;117(32):18951-18953. DOI: 10.1073/pnas.200901711710.1073/pnas.2009017117743099832699149
- 95. Ong EZ, Chan YFZ, Leong WY, Lee NMY, Kalimuddin S, Haja Mohideen SM, et al. A Dynamic Immune Response Shapes COVID-19 Progression. Cell Host Microbe. 2020;27(6):879-882.e2. DOI: 10.1016/j.chom.2020.03.02110.1016/j.chom.2020.03.021719208932359396
- 96. Li Z, Xiao J, Xu X, Li W, Zhong R, Qi L, et al. M-CSF, IL-6, and TGF-β promote generation of a new subset of tissue repair macrophage for traumatic brain injury recovery. Sci Adv. 2021;7(11):6260-6272. DOI: 10.1126/sciadv.abb626010.1126/sciadv.abb6260795445533712456
- 97. Asensi V, Valle E, Meana A, Fierer J, Celada A, Alvarez V, et al. In vivo interleukin-6 protects neutrophils from apoptosis in osteomyelitis. Infect Immun. 2004;72(7):3823-3828. DOI: 10.1128/IAI.72.7.3823-3828.200410.1128/IAI.72.7.3823-3828.200442742815213123
- 98. Lauder SN, Jones E, Smart K, Bloom A, Williams AS, Hindley JP, et al. Interleukin-6 limits influenza-induced inflammation and protects against fatal lung pathology. Eur J Immunol. 2013;43(10):2613-2625. DOI: 10.1002/eji.20124301810.1002/eji.201243018388638623857287
- 99. Yang ML, Wang CT, Yang SJ, Leu CH, Chen SH, Wu CL, et al. IL-6 ameliorates acute lung injury in influenza virus infection. Sci Rep. 2017;7:43829 DOI: 10.1038/srep4382910.1038/srep43829
- 100. Diehl S, Anguita J, Hoffmeyer A, Zapton T, Ihle JN, Fikrig E, et al. Inhibition of Th1 differentiation by IL-6 is mediated by SOCS1. Immunity. 2000;13(6):805-815. DOI: 10.1016/S1074-7613(00)00078-910.1016/S1074-7613(00)00078-9
- 101. Gubernatorova EO, Gorshkova EA, Polinova AI, Drutskaya MS. IL-6: Relevance for immunopathology of SARS-CoV-2. Cytokine and Growth Factor Rev. 2020;53:13-24. DOI: 10.1016/j.cytogfr.2020.05.00910.1016/j.cytogfr.2020.05.009723791632475759
- 102. Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta. 2011;1813(5):878-888. DOI: 10.1016/j.bbamcr.2011.01.03410.1016/j.bbamcr.2011.01.03421296109
- 103. Zhang J, Hao Y, Ou W, Ming F, Liang G, Qian Y, et al. Serum interleukin-6 is an indicator for severity in 901 patients with SARS-CoV-2 infection: a cohort study. J Transl Med. 2020;18:406. DOI: 10.1186/s12967-020-02571-x10.1186/s12967-020-02571-x759495133121497
- 104. Sabaka P, Koščálová A, Straka I, Hodosy J, Lipták R, Kmotorková B, et al. Role of interleukin 6 as a predictive factor for a severe course of Covid-19: retrospective data analysis of patients from a long-term care facility during Covid-19 outbreak. BMC Infect Dis. 2021;21:308. DOI: 10.1186/s12879-021-05945-810.1186/s12879-021-05945-8800611233781216
- 105. Herold T, Jurinovic V, Arnreich C, Lipworth BJ, Hellmuth JC, von Bergwelt-Baildon M, et al. Elevated levels of IL-6 and CRP predict the need for mechanical ventilation in COVID-19. J Allergy Clin Immunol. 2020;146(1):128-136.e4. DOI: 10.1016/j.jaci.2020.05.00810.1016/j.jaci.2020.05.008723323932425269
- 106. Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, et al. Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19). Front Immunol. 2020;11:827 DOI: 10.3389/fimmu.2020.0082710.3389/fimmu.2020.00827720590332425950
- 107. Del Valle DM, Kim-Schulze S, Huang HH, Beckmann ND, Nirenberg S, Wang B, et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med. 2020;26(10):1636-1643. DOI: 10.1038/s41591-020-1051-910.1038/s41591-020-1051-9786902832839624
- 108. Li L, Chen C. Contribution of acute phase reaction proteins to the diagnosis and treatment of 2019 novel coronavirus disease (COVID-19). Epidemiol Infect. 2020;148:e164 DOI: 10.1017/S095026882000165X10.1017/S095026882000165X739914932713370
- 109. Castell J V., Gómez-Lechón MJ, David M, Andus T, Geiger T, Trullenque R, et al. Interleukin-6 is the major regulator of acute phase protein synthesis in adult human hepatocytes. FEBS Lett. 1989;242(2):237-239. DOI: 10.1016/0014-5793(89)80476-410.1016/0014-5793(89)80476-4
- 110. Yormaz B, Ergun D, Tulek B, Ergun R, Korez KM, Suerdem M, et al. The evaluation of prognostic value of acute phase reactants in the COVID-19. Bratislava Med J. 2020;121(9):628-633. DOI: 10.4149/BLL_2020_10310.4149/BLL_2020_10332990010
- 111. Liu Y, Yang Y, Zhang C, Huang F, Wang F, Yuan J, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci. 2020;63(3):364-374. DOI: 10.1007/s11427-020-1643-810.1007/s11427-020-1643-8708856632048163
- 112. Ahmed S, Ansar Ahmed Z, Siddiqui I, Haroon Rashid N, Mansoor M, Jafri L. Evaluation of serum ferritin for prediction of severity and mortality in COVID-19- A cross sectional study. Ann Med Surg. 2021;63:102163. DOI: 10.1016/j.amsu.2021.02.00910.1016/j.amsu.2021.02.009787906533614024
- 113. Lino K, Guimarães GMC, Alves LS, Oliveira AC, Faustino R, Fernandes CS, et al. Serum ferritin at admission in hospitalized COVID-19 patients as a predictor of mortality. Brazilian J Infect Dis. 2021;25(2):101569. DOI: 10.1016/j.bjid.2021.10156910.1016/j.bjid.2021.101569795926633736948
- 114. Zinellu A, Paliogiannis P, Carru C, Mangoni AA. Serum amyloid A concentrations, COVID-19 severity and mortality: An updated systematic review and meta-analysis. Int J Infect Dis. 2021;105:668-674. DOI: 10.1016/j.ijid.2021.03.02510.1016/j.ijid.2021.03.025795967833737133
- 115. Ghahramani S, Tabrizi R, Lankarani KB, Kashani SMA, Rezaei S, Zeidi N, et al. Laboratory features of severe vs. non-severe COVID-19 patients in Asian populations: A systematic review and meta-analysis. Eur J Med Res. 2020;25:30. DOI: 10.1186/s40001-020-00432-310.1186/s40001-020-00432-3739694232746929