Have a personal or library account? Click to login
Insights into Innate Immune Response Against SARS-CoV-2 Infection Cover

Insights into Innate Immune Response Against SARS-CoV-2 Infection

Open Access
|Jul 2021

References

  1. 1. Zhou P, Yang X Lou, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature.2020;579 (7798):270-273. DOI: 10.1038/s41586-020-2012-710.1038/s41586-020-2012-7709541832015507
  2. 2. World Health Organization (WHO). Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV). Geneva, Switzerland. 2020 (accessed 2021 Feb 14).
  3. 3. Peeri NC, Shrestha N, Rahman MS, Zaki R, Tan Z, Bibi S, et al. The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: what lessons have we learned? Int J Epidemiol. 2020;49(3):717-726. DOI: 10.1093/ije/dyaa03310.1093/ije/dyaa033719773432086938
  4. 4. Worldometer. Coronavirus Update (Live): Cases and Deaths from COVID-19 Virus Pandemic. Worldometers. 2021(accessed 2021 June 10).
  5. 5. Azkur AK, Akdis M, Azkur D, Sokolowska M, van de Veen W, Brüggen MC, et al. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy: European Journal of Allergy and Clinical Immunology. 2020;75:1564-1581. DOI: 10.1111/all.1436410.1111/all.14364727294832396996
  6. 6. Dong M, Zhang J, Ma X, Tan J, Chen L, Liu S, et al. ACE2, TMPRSS2 distribution and extrapulmonary organ injury in patients with COVID-19. Biomedicine and Pharmacotherapy. 2020;131:110678 DOI: 10.1016/j.biopha.2020.11067810.1016/j.biopha.2020.110678744494232861070
  7. 7. Blot M, Bour JB, Quenot JP, Bourredjem A, Nguyen M, Guy J, et al. The dysregulated innate immune response in severe COVID-19 pneumonia that could drive poorer outcome. J Transl Med. 2020;18(1):457. DOI: 10.1186/s12967-020-02646-910.1186/s12967-020-02646-9771126933272291
  8. 8. Campbell K, Steiner G, Wells D, Ribas A, Kalbasi A. Prioritization of SARS-CoV-2 epitopes using a pan-HLA and global population inference approach. bioRxiv.2020; 2020.03.30.016931. DOI: 10.1101/2020.03.30.01693110.1101/2020.03.30.016931723905532511325
  9. 9. Georgescu AM, Banescu C, Azamfirei R, Hutanu A, Moldovan V, Badea I, et al. Evaluation of TNF-α genetic polymorphisms as predictors for sepsis susceptibility and progression. BMC Infect Dis. 2020;20(1):1-11. DOI: 10.1186/s12879-020-4910-610.1186/s12879-020-4910-6707175432171247
  10. 10. Georgescu AM, Bănescu C, Badea I, Moldovan V, Huțanu A, Voidăzan S, et al. IL-6 gene polymorphisms and sepsis in ICU adult romanian patients: a prospective study. Rev Rom Med Lab. 2017;25(1):75-89. DOI: 10.1515/rrlm-2016-004410.1515/rrlm-2016-0044
  11. 11. Forbester JL, Humphreys IR. Genetic influences on viral-induced cytokine responses in the lung. Mucosal Immunology. 2021;14:14-25. DOI: 10.1038/s41385-020-00355-610.1038/s41385-020-00355-6765861933184476
  12. 12. Netea MG, Giamarellos-Bourboulis EJ, Domínguez-Andrés J, Curtis N, van Crevel R, van de Veerdonk FL, et al. Trained Immunity: a Tool for Reducing Susceptibility to and the Severity of SARS-CoV-2 Infection. Cell. 2020;181:969-77. DOI: 10.1016/j.cell.2020.04.04210.1016/j.cell.2020.04.042719690232437659
  13. 13. Aryal S. Anatomical Barriers of Immune System-Skin and Mucus. Microbe Notes Online Microbiology and Biology Study Notes. https://microbenotes.com/anatomical-barriers-of-immune-system-skin-and-mucus (accessed May 10, 2021)
  14. 14. Yousef H, Sharma S. Anatomy, Skin, Epidermis. Stat-Pearls. StatPearls Publishing; 2018. http://www.ncbi.nlm.nih.gov/pubmed/29262154
  15. 15. Rahimi H, Tehranchinia Z. A Comprehensive Review of Cutaneous Manifestations Associated with COVID-19. BioMed Research International. 2020:1236520. DOI: 10.1155/2020/123652010.1155/2020/1236520736423232724793
  16. 16. Mawhirt SL, Frankel D, Diaz AM. Cutaneous Manifestations in Adult Patients with COVID-19 and Dermato-logic Conditions Related to the COVID-19 Pandemic in Health Care Workers. Current Allergy and Asthma Reports. 2020;20:75 DOI: 10.1007/s11882-020-00974-w10.1007/s11882-020-00974-w754973533047260
  17. 17. Rose-Sauld S, Dua A. COVID toes and other cutaneous manifestations of COVID-19. Journal of Wound Care. 2020;29:486-487. DOI: 10.12968/jowc.2020.29.9.48610.12968/jowc.2020.29.9.48632924822
  18. 18. Elgarhy LH, Salem ML. Could injured skin be a reservoir for SARS-CoV-2 virus spread? Clinics in Dermatology. 2020;38:762-763. DOI: 10.1016/j.clindermatol.2020.06.00410.1016/j.clindermatol.2020.06.004728273733341211
  19. 19. Medina-Enríquez MM, Lopez-León S, Carlos-Escalante JA, Aponte-Torres Z, Cuapio A, Wegman-Ostrosky T. ACE2: the molecular doorway to SARS-CoV-2. Cell and Bioscience. 2020;10:1-17. DOI: 10.1186/s13578-020-00519-810.1186/s13578-020-00519-8777280133380340
  20. 20. Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. Single-Cell RNA Expression Profiling of ACE2, the Receptor of SARS-CoV-2. Vol. 202, American Journal of Respiratory and Critical Care Medicine. 2020;202:756-759. DOI: 10.1164/rccm.202001-0179LE10.1164/rccm.202001-0179LE746241132663409
  21. 21. Yao XH, Li TY, He ZC, Ping YF, Liu HW, Yu SC, et al. A pathological report of three COVID-19 cases by minimally invasive autopsies. Chinese J Pathol. 2020;49(5):411-417.
  22. 22. Zhang Y, Chen Y, Li Y, Huang F, Luo B, Yuan Y, et al. The ORF8 Protein of SARS-CoV-2 Mediates Immune Evasion through Down-regulating MHC-I. PNAS. 2021; 118(23): e2024202118 DOI: 10.1073/pnas.202420211810.1073/pnas.2024202118820191934021074
  23. 23. Nguyen A, David JK, Maden SK, Wood MA, Weeder BR, Nellore A, et al. Human Leukocyte Antigen Susceptibility Map for Severe Acute Respiratory Syndrome Coronavirus 2. J Virol. 2020;94(13): e00510-20 DOI: 10.1128/JVI.00510-2010.1128/JVI.00510-20730714932303592
  24. 24. Borges RC, Hohmann MS, Borghi SM. Dendritic cells in COVID-19 immunopathogenesis: insights for a possible role in determining disease outcome. International Reviews of Immunology. 2021;40(1-2):108-125 DOI: 10.1080/08830185.2020.184419510.1080/08830185.2020.184419533191813
  25. 25. Wang K, Chen W, Zhou Y-S, Lian J-Q, Zhang Z, Du P, et al. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. Sig Transduct Target Ther. 2020;5:283. DOI: 10.1038/s41392-020-00426-x10.1038/s41392-020-00426-x771489633277466
  26. 26. Coutard B, Valle C, de Lamballerie X, Canard B, Seidah NG, Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Anti-viral Res. 2020;176:104742. DOI: 10.1016/j.antiviral.2020.10474210.1016/j.antiviral.2020.104742711409432057769
  27. 27. Yang D, Chu H, Hou Y, Chai Y, Shuai H, Lee AC-Y, et al. Attenuated Interferon and Proinflammatory Response in SARS-CoV-2-Infected Human Dendritic Cells Is Associated With Viral Antagonism of STAT1 Phosphorylation. J Infect Dis. 2020;222(5):734-45. DOI: 10.1093/infdis/jiaa35610.1093/infdis/jiaa356733779332563187
  28. 28. Zhou R, To KKW, Wong YC, Liu L, Zhou B, Li X, et al. Acute SARS-CoV-2 Infection Impairs Dendritic Cell and T Cell Responses. Immunity. 2020;53(4):864-877. e5. DOI: 10.1016/j.immuni.2020.07.02610.1016/j.immuni.2020.07.026740267032791036
  29. 29. Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Møller R, et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell. 2020;181(5):1036-1045.e9. DOI: 10.1016/j.cell.2020.04.02610.1016/j.cell.2020.04.026722758632416070
  30. 30. Zhou J, Chu H, Li C, Wong BHY, Cheng ZS, Poon VKM, et al. Active replication of middle east respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: Implications for pathogenesis. J Infect Dis. 2014; 209(9):1331-1342. DOI: 10.1093/infdis/jit50410.1093/infdis/jit504710735624065148
  31. 31. Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124(2):188-195. DOI: 10.1182/blood-2014-05-55272910.1182/blood-2014-05-552729409368024876563
  32. 32. Magro G. SARS-CoV-2 and COVID-19: Is interleukin-6 (IL-6) the ‘culprit lesion’ of ARDS onset? What is there besides Tocilizumab? SGP130Fc. Cytokine: X. 2020;(2): 100029. DOI: 10.1016/j.cytox.2020.10002910.1016/j.cytox.2020.100029722464932421092
  33. 33. Garbers C, Monhasery N, Aparicio-Siegmund S, Lokau J, Baran P, Nowell MA, et al. The interleukin-6 receptor Asp358Ala single nucleotide polymorphism rs2228145 confers increased proteolytic conversion rates by ADAM proteases. Biochim Biophys Acta - Mol Basis Dis. 2014;1842(9):1485-1494. DOI: 10.1016/j.bbadis.2014.05.01810.1016/j.bbadis.2014.05.01824878322
  34. 34. Rose-John S. Il-6 trans-signaling via the soluble IL-6 receptor: Importance for the proinflammatory activities of IL-6. Int J Biol Sci. 2012;8(9):1237-1247. DOI: 10.7150/ijbs.498910.7150/ijbs.4989349144723136552
  35. 35. Martinez FO, Combes TW, Orsenigo F, Gordon S. Monocyte activation in systemic Covid-19 infection: Assay and rationale. EBioMedicine. 2020;59:102964 DOI: 10.1016/j.ebiom.2020.10296410.1016/j.ebiom.2020.102964745645532861199
  36. 36. Zhou Y, Fu B, Zheng X, Wang D, Zhao C, Qi Y, et al. Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients. National Science Review. 2020;7(6):998-1002. DOI: 10.1093/nsr/nwaa04110.1093/nsr/nwaa041710800534676125
  37. 37. Zhang N, Czepielewski RS, Jarjour NN, Erlich EC, Esaulova E, Saunders BT, et al. Expression of factor V by resident macrophages boosts host defense in the peritoneal cavity. J Exp Med. 2019;216(6):1291-1300. DOI: 10.1084/jem.2018202410.1084/jem.20182024654786631048328
  38. 38. Boumaza A, Gay L, Mezouar S, Diallo AB, Michel M, Desnues B, et al. Monocytes and macrophages, targets of SARS-CoV-2: The clue for Covid-19 immunoparalysis. J Infect Dis. 2021:jiab044. DOI: 10.1093/infdis/jiab04410.1093/infdis/jiab044792881733493287
  39. 39. Feng Z, Diao B, Wang R, Wang G, Wang C, Tan Y, et al. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly decimates human spleens and lymph nodes. medRx-iv.2020. DOI: 10.1101/2020.03.27.20045427 DOI: 10.1101/2020.03.27.2004542710.1101/2020.03.27.20045427
  40. 40. Park MD. Macrophages: a Trojan horse in COVID-19? Nat Rev Immunol. 2020;20(6):351. DOI: 10.1038/s41577-020-0317-210.1038/s41577-020-0317-2718693032303696
  41. 41. Marcenaro E, Carlomagno S, Pesce S, Moretta A, Sivori S. Bridging innate NK cell functions with adaptive immunity. Adv Exp Med Biol. Adv Exp Med Biol. 2011;780: 45-55. DOI: 10.1007/978-1-4419-5632-3_510.1007/978-1-4419-5632-3_521842364
  42. 42. Molgora M, Supino D, Mavilio D, Santoni A, Moretta L, Mantovani A, et al. The yin-yang of the interaction between myelomonocytic cells and NK cells. Scand J Immunol. 2018;88(3):e12705 DOI: 10.1111/sji.1270510.1111/sji.12705648539430048003
  43. 43. Zhao X-N, You Y, Wang G-L, Gao H-X, Duan L-J, Zhang S-B, et al. Longitudinal single-cell immune profiling revealed distinct innate immune response in asymptomatic COVID-19 patients. bioRxiv. 2020:2020.09.02.276865. DOI: 10.1101/2020.09.02.27686510.1101/2020.09.02.276865
  44. 44. Pinto D, Park Y-J, Beltramello M, Walls A, Tortorici MA, Bianchi S, et al. Structural and functional analysis of a potent sarbecovirus neutralizing antibody. bioRxiv. 2020; 10.1101/2020.04.07.023903 DOI: 10.2210/pdb-6ws6/pdb
  45. 45. Li T, Qiu Z, Zhang L, Han Y, He W, Liu Z, et al. Significant Changes of Peripheral T Lymphocyte Subsets in Patients with Severe Acute Respiratory Syndrome. J Infect Dis. 2004;189(4):648-651. DOI: 10.1086/38153510.1086/381535710994614767818
  46. 46. Zheng M, Gao Y, Wang G, Song G, Liu S, Sun D, et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol. 2020;17:533-535. DOI: 10.1038/s41423-020-0402-210.1038/s41423-020-0402-2709185832203188
  47. 47. Bao C, Tao X, Cui W, Hao Y, Zheng S, Yi B, et al. Natural killer cells associated with SARS-CoV-2 viral RNA shedding, antibody response and mortality in COVID-19 patients. Exp Hematol Oncol. 2021;10(1):5 DOI: 10.1186/s40164-021-00199-110.1186/s40164-021-00199-1783928633504359
  48. 48. Galani IE, Andreakos E. Neutrophils in viral infections: Current concepts and caveats. J Leukoc Biol. 2015;98(4):557-564. DOI: 10.1189/jlb.4VMR1114-555R10.1189/jlb.4VMR1114-555R26160849
  49. 49. Borges L, Pithon-Curi TC, Curi R, Hatanaka E. COVID-19 and Neutrophils: The relationship between hyperinflammation and neutrophil extracellular traps. Mediators of Inflammation. 2020; 2020: 8829674. DOI: 10.1155/2020/882967410.1155/2020/8829674773240833343232
  50. 50. Barr FD, Ochsenbauer C, Wira CR, Rodriguez-Garcia M. Neutrophil extracellular traps prevent HIV infection in the female genital tract. Mucosal Immunol. 2018;11(5):1420-1428. DOI: 10.1038/s41385-018-0045-010.1038/s41385-018-0045-0616217329875403
  51. 51. Saitoh T, Komano J, Saitoh Y, Misawa T, Takahama M, Kozaki T, et al. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe. 2012;12(1):109-116. DOI: 10.1016/j.chom.2012.05.01510.1016/j.chom.2012.05.01522817992
  52. 52. He Y, Yang FY, Sun EW. Neutrophil Extracellular Traps in Autoimmune Diseases. Chin Med J. 2018;131:1513-1519. DOI: 10.4103/0366-6999.23512210.4103/0366-6999.235122603268829941703
  53. 53. Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M, Madison JA, et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020;5(11);e138999 DOI: 10.1101/2020.04.30.2008673610.1101/2020.04.30.20086736727423432511553
  54. 54. Thierry AR, Roch B. SARS-CoV2 may evade innate immune response, causing uncontrolled neutrophil extracellular traps formation and multi-organ failure. Clin Sci (Lond). 2020;134:1295-1300. DOI: 10.1042/CS2020053110.1042/CS2020053132543703
  55. 55. Shi Y, Gauer JS, Baker SR, Philippou H, Connell SD, Ariëns RAS. Neutrophils can promote clotting via FXI and impact clot structure via neutrophil extracellular traps in a distinctive manner in vitro. Sci Rep. 2021;11(1):1718. DOI: 10.1038/s41598-021-81268-710.1038/s41598-021-81268-7781402833462294
  56. 56. Fuchs TA, Kremer Hovinga JA, Schatzberg D, Wagner DD, Lämmle B. Circulating DNA and myeloperoxidase indicate disease activity in patients with thrombotic microangiopathies. Blood. 2012;120(6):1157-1164. DOI: 10.1182/blood-2012-02-41219710.1182/blood-2012-02-412197341871222611154
  57. 57. Pfeiler S, Stark K, Massberg S, Engelmann B. Propagation of thrombosis by neutrophils and extracellular nucleosome networks. Haematologica. 2017;102(2):206-213. DOI: 10.3324/haematol.2016.14247110.3324/haematol.2016.142471528692927927771
  58. 58. Stiel L, Mayeur-Rousse C, Helms J, Meziani F, Mauvieux L. First visualization of circulating neutrophil extracellular traps using cell fluorescence during human septic shock-induced disseminated intravascular coagulation. Thromb Res. 2019;183:153-158. DOI: 10.1016/j.thromres.2019.09.03610.1016/j.thromres.2019.09.03631678710
  59. 59. Sabbione F, Keitelman IA, Iula L, Ferrero M, Giordano MN, Baldi P, et al. Neutrophil Extracellular Traps Stimulate Proinflammatory Responses in Human Airway Epithelial Cells. J Innate Immun. 2017;9(4):387-402. DOI: 10.1159/00046029310.1159/000460293673890128467984
  60. 60. Barbu EA, Mendelsohn L, Samsel L, Thein SL. Pro-inflammatory cytokines associate with NETosis during sickle cell vaso-occlusive crises. Cytokine. 2020;127:154933. DOI: 10.1016/j.cyto.2019.15493310.1016/j.cyto.2019.154933841974431778959
  61. 61. Cheng OZ, Palaniyar N. NET balancing: A problem in inflammatory lung diseases. Front Immunol. 2013;4:1. DOI: 10.3389/fimmu.2013.0000110.3389/fimmu.2013.00001355339923355837
  62. 62. Lee KH, Kronbichler A, Park DDY, Park YM, Moon H, Kim H, et al. Neutrophil extracellular traps (NETs) in autoimmune diseases: A comprehensive review. Autoimmun Rev. 2017;16(11):1160-1173. DOI: 10.1016/j.autrev.2017.09.01210.1016/j.autrev.2017.09.01228899799
  63. 63. Lin A, Loré K. Granulocytes: New members of the antigen-presenting cell family. Front Immunol. 2017;8:1781 DOI: 10.3389/fimmu.2017.0178110.3389/fimmu.2017.01781573222729321780
  64. 64. Leliefeld PHC, Koenderman L, Pillay J. How neutrophils shape adaptive immune responses. Front Immunol. 2015;6:471. DOI: 10.3389/fimmu.2015.0047110.3389/fimmu.2015.00471456841026441976
  65. 65. Mukherjee M, Lacy P, Ueki S. Eosinophil extracellular traps and inflammatory pathologies-untangling the web! Front Immunol. 2018;9:2763. DOI: 10.3389/fimmu.2018.0276310.3389/fimmu.2018.02763627523730534130
  66. 66. Nagase H, Okugawa S, Ota Y, Yamaguchi M, Tomizawa H, Matsushima K, et al. Expression and Function of Toll-Like Receptors in Eosinophils: Activation by Toll-Like Receptor 7 Ligand. J Immunol. 2003;171(8):3977-3982. DOI: 10.4049/jimmunol.171.8.397710.4049/jimmunol.171.8.397714530316
  67. 67. Lindsley AW, Schwartz JT, Rothenberg ME. Eosinophil responses during COVID-19 infections and coronavirus vaccination. J Allergy Clin Immunol. 2020;146(1):1-7. DOI: 10.1016/j.jaci.2020.04.02110.1016/j.jaci.2020.04.021719472732344056
  68. 68. Du Y, Tu L, Zhu P, Mu M, Wang R, Yang P, et al. Clinical features of 85 fatal cases of COVID-19 from Wuhan: A retrospective observational study. Am J Respir Crit Care Med. 2020;201(11):1372-1379. DOI: 10.1164/rccm.202003-0543OC10.1164/rccm.202003-0543OC725865232242738
  69. 69. Zhang J, Dong X, Cao Y, Yuan Y, Yang Y, Yan Y, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020;75(7):1730-1741. DOI: 10.1111/all.1423810.1111/all.1423832077115
  70. 70. Borgne P Le, Vuillaume LA, Alamé K, Lefebvre F, Chabrier S, Bérard L, et al. Do blood eosinophils predict in-hospital mortality or severity of disease in SARS-CoV-2 infection? A retrospective multicenter study. Microorganisms. 2021;9(2):334. DOI: 10.3390/microorganisms902033410.3390/microorganisms9020334791491633567583
  71. 71. Xia Z. Eosinopenia as an early diagnostic marker of COVID-19 at the time of the epidemic. E Clinical Medicine. 2020;23:100398 DOI: 10.1016/j.eclinm.2020.10039810.1016/j.eclinm.2020.100398729984832572392
  72. 72. Gralinski LE, Sheahan TP, Morrison TE, Menachery VD, Jensen K, Leist SR, et al. Complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis. MBio. 2018;9(5):e01753-18 DOI: 10.1128/mBio.01753-1810.1128/mBio.01753-18617862130301856
  73. 73. Gao T, Hu M, Zhang X, Li H, Zhu L, Liu H, et al. Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2-mediated complement over-activation. medRxiv. 2020:2020.03.29.20041962. DOI: 10.1101/2020.03.29.2004196210.1101/2020.03.29.20041962
  74. 74. Yuen J, Pluthero FG, Douda DN, Riedl M, Cherry A, Ulanova M, et al. NETosing neutrophils activate complement both on their own NETs and bacteria via alternative and non-alternative pathways. Front Immunol. 2016;7:137. DOI: 10.3389/fimmu.2016.0013710.3389/fimmu.2016.00137483163627148258
  75. 75. Java A, Apicelli AJ, Kathryn Liszewski M, Coler-Reilly A, Atkinson JP, Kim AHJ, et al. The complement system in COVID-19: Friend and foe? JCI Insight. 2020;5(15):e140711. DOI: 10.1172/jci.insight.14071110.1172/jci.insight.140711745506032554923
  76. 76. Kurosawa S, Stearns-Kurosawa DJ. Complement, thrombotic microangiopathy and disseminated intravascular coagulation. J Intensive Care. 2014;2(1):65 DOI: 10.1186/s40560-014-0061-410.1186/s40560-014-0061-4433618025705421
  77. 77. Zhang L, Yan X, Fan Q, Liu H, Liu X, Liu Z, et al. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J Thromb Haemost. 2020;18(6):1324-1329. DOI: 10.1111/jth.1485910.1111/jth.14859726473032306492
  78. 78. Khanmohammadi S, Rezaei N. Role of Toll-like receptors in the pathogenesis of COVID-19. J Med Virol. 2021;93(5):2735-2739. DOI: 10.1002/jmv.2682610.1002/jmv.26826801426033506952
  79. 79. Choudhury A, Mukherjee S. In silico studies on the comparative characterization of the interactions of SARS-CoV-2 spike glycoprotein with ACE-2 receptor homologs and human TLRs. J Med Virol. 2020;92(10):2105-2113. DOI: 10.1002/jmv.2598710.1002/jmv.25987726766332383269
  80. 80. Moreno-Eutimio MA, López-Macías C, Pastelin-Palacios R. Bioinformatic analysis and identification of single-stranded RNA sequences recognized by TLR7/8 in the SARS-CoV-2, SARS-CoV, and MERS-CoV genomes. Microbes Infect. 2020;22(4-5):226-229. DOI: 10.1016/j.micinf.2020.04.00910.1016/j.micinf.2020.04.009719207432361001
  81. 81. Cicco S, Cicco G, Racanelli V, Vacca A. Neutrophil Extracellular Traps (NETs) and Damage-Associated Molecular Patterns (DAMPs): Two Potential Targets for COVID-19 Treatment. Mediators of Inflammation 2020; 2020:7527953 DOI: 10.1155/2020/752795310.1155/2020/7527953736622132724296
  82. 82. Bezemer GFG, Garssen J. TLR9 and COVID-19: A Multidisciplinary Theory of a Multifaceted Therapeutic Target. Front Pharmacol. 2021;11:601685. DOI: 10.3389/fphar.2020.60168510.3389/fphar.2020.601685784458633519463
  83. 83. Fallerini C, Daga S, Mantovani S, Benetti E, Picchiotti N, Francisci D, et al. Association of toll-like receptor 7 variants with life-threatening COVID-19 disease in males: Findings from a nested case-control study. eLife. 2021;10:e67569
  84. 84. Li Y, Jerkic M, Slutsky AS, Zhang H. Molecular mechanisms of sex bias differences in COVID-19 mortality. Crit Care. 2020;24:405. DOI: 10.1186/s13054-020-03118-810.1186/s13054-020-03118-8734725632646459
  85. 85. Portela Sousa C, Brites C. Immune response in SARS-CoV-2 infection: the role of interferons type I and type III. Braz J Infect Dis. 2020;24(5):428-433. DOI: 10.1016/j.bjid.2020.07.01110.1016/j.bjid.2020.07.011744881732866437
  86. 86. Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Smith N, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. 2020;369(6504):718-724. DOI: 10.1126/science.abc602710.1126/science.abc6027740263232661059
  87. 87. Contoli M, Papi A, Tomassetti L, Rizzo P, Vieceli Dalla Sega F, Fortini F, et al. Blood Interferon-α Levels and Severity, Outcomes, and Inflammatory Profiles in Hospitalized COVID-19 Patients. Front Immunol. 2021;12:648004. DOI: 10.3389/fimmu.2021.64800410.3389/fimmu.2021.648004798545833767713
  88. 88. Nice TJ, Robinson BA, Van Winkle JA. The Role of Interferon in Persistent Viral Infection: Insights from Murine Norovirus. Trends in Microbiol. 2018;26(6):510-524. DOI: 10.1016/j.tim.2017.10.01010.1016/j.tim.2017.10.010595777829157967
  89. 89. Channappanavar R, Fehr AR, Vijay R, Mack M, Zhao J, Meyerholz DK, et al. Dysregulated Type I Interferon and Inflammatory Monocyte-Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice. Cell Host Microbe. 2016:19(2):181-193. DOI: 10.1016/j.chom.2016.01.00710.1016/j.chom.2016.01.007475272326867177
  90. 90. Taefehshokr N, Taefehshokr S, Hemmat N, Heit B. Covid-19: Perspectives on Innate Immune Evasion. Front Immunol. 2020;11:580641 DOI: 10.3389/fimmu.2020.58064110.3389/fimmu.2020.580641755424133101306
  91. 91. Major J, Crotta S, Llorian M, McCabe TM, Gad HH, Priestnall SL, et al. Type I and III interferons disrupt lung epithelial repair during recovery from viral infection. Science. 2020;369(6504):712-717. DOI: 10.1126/science.abc206110.1126/science.abc2061729250032527928
  92. 92. Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann HH, Zhang Y, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4585.
  93. 93. Liu QQ, Cheng A, Wang Y, Li H, Hu L, Zhao X, et al. Cytokines and their relationship with the severity and prognosis of coronavirus disease 2019 (COVID-19): A retrospective cohort study. BMJ Open. 2020;10:e041471. DOI: 10.1136/bmjopen-2020-04147110.1136/bmjopen-2020-041471770542633257492
  94. 94. Cauchois R, Koubi M, Delarbre D, Manet C, Carvelli J, Blasco VB, et al. Early IL-1 receptor blockade in severe inflammatory respiratory failure complicating COVID-19. PNAS. 2020;117(32):18951-18953. DOI: 10.1073/pnas.200901711710.1073/pnas.2009017117743099832699149
  95. 95. Ong EZ, Chan YFZ, Leong WY, Lee NMY, Kalimuddin S, Haja Mohideen SM, et al. A Dynamic Immune Response Shapes COVID-19 Progression. Cell Host Microbe. 2020;27(6):879-882.e2. DOI: 10.1016/j.chom.2020.03.02110.1016/j.chom.2020.03.021719208932359396
  96. 96. Li Z, Xiao J, Xu X, Li W, Zhong R, Qi L, et al. M-CSF, IL-6, and TGF-β promote generation of a new subset of tissue repair macrophage for traumatic brain injury recovery. Sci Adv. 2021;7(11):6260-6272. DOI: 10.1126/sciadv.abb626010.1126/sciadv.abb6260795445533712456
  97. 97. Asensi V, Valle E, Meana A, Fierer J, Celada A, Alvarez V, et al. In vivo interleukin-6 protects neutrophils from apoptosis in osteomyelitis. Infect Immun. 2004;72(7):3823-3828. DOI: 10.1128/IAI.72.7.3823-3828.200410.1128/IAI.72.7.3823-3828.200442742815213123
  98. 98. Lauder SN, Jones E, Smart K, Bloom A, Williams AS, Hindley JP, et al. Interleukin-6 limits influenza-induced inflammation and protects against fatal lung pathology. Eur J Immunol. 2013;43(10):2613-2625. DOI: 10.1002/eji.20124301810.1002/eji.201243018388638623857287
  99. 99. Yang ML, Wang CT, Yang SJ, Leu CH, Chen SH, Wu CL, et al. IL-6 ameliorates acute lung injury in influenza virus infection. Sci Rep. 2017;7:43829 DOI: 10.1038/srep4382910.1038/srep43829
  100. 100. Diehl S, Anguita J, Hoffmeyer A, Zapton T, Ihle JN, Fikrig E, et al. Inhibition of Th1 differentiation by IL-6 is mediated by SOCS1. Immunity. 2000;13(6):805-815. DOI: 10.1016/S1074-7613(00)00078-910.1016/S1074-7613(00)00078-9
  101. 101. Gubernatorova EO, Gorshkova EA, Polinova AI, Drutskaya MS. IL-6: Relevance for immunopathology of SARS-CoV-2. Cytokine and Growth Factor Rev. 2020;53:13-24. DOI: 10.1016/j.cytogfr.2020.05.00910.1016/j.cytogfr.2020.05.009723791632475759
  102. 102. Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta. 2011;1813(5):878-888. DOI: 10.1016/j.bbamcr.2011.01.03410.1016/j.bbamcr.2011.01.03421296109
  103. 103. Zhang J, Hao Y, Ou W, Ming F, Liang G, Qian Y, et al. Serum interleukin-6 is an indicator for severity in 901 patients with SARS-CoV-2 infection: a cohort study. J Transl Med. 2020;18:406. DOI: 10.1186/s12967-020-02571-x10.1186/s12967-020-02571-x759495133121497
  104. 104. Sabaka P, Koščálová A, Straka I, Hodosy J, Lipták R, Kmotorková B, et al. Role of interleukin 6 as a predictive factor for a severe course of Covid-19: retrospective data analysis of patients from a long-term care facility during Covid-19 outbreak. BMC Infect Dis. 2021;21:308. DOI: 10.1186/s12879-021-05945-810.1186/s12879-021-05945-8800611233781216
  105. 105. Herold T, Jurinovic V, Arnreich C, Lipworth BJ, Hellmuth JC, von Bergwelt-Baildon M, et al. Elevated levels of IL-6 and CRP predict the need for mechanical ventilation in COVID-19. J Allergy Clin Immunol. 2020;146(1):128-136.e4. DOI: 10.1016/j.jaci.2020.05.00810.1016/j.jaci.2020.05.008723323932425269
  106. 106. Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, et al. Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19). Front Immunol. 2020;11:827 DOI: 10.3389/fimmu.2020.0082710.3389/fimmu.2020.00827720590332425950
  107. 107. Del Valle DM, Kim-Schulze S, Huang HH, Beckmann ND, Nirenberg S, Wang B, et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med. 2020;26(10):1636-1643. DOI: 10.1038/s41591-020-1051-910.1038/s41591-020-1051-9786902832839624
  108. 108. Li L, Chen C. Contribution of acute phase reaction proteins to the diagnosis and treatment of 2019 novel coronavirus disease (COVID-19). Epidemiol Infect. 2020;148:e164 DOI: 10.1017/S095026882000165X10.1017/S095026882000165X739914932713370
  109. 109. Castell J V., Gómez-Lechón MJ, David M, Andus T, Geiger T, Trullenque R, et al. Interleukin-6 is the major regulator of acute phase protein synthesis in adult human hepatocytes. FEBS Lett. 1989;242(2):237-239. DOI: 10.1016/0014-5793(89)80476-410.1016/0014-5793(89)80476-4
  110. 110. Yormaz B, Ergun D, Tulek B, Ergun R, Korez KM, Suerdem M, et al. The evaluation of prognostic value of acute phase reactants in the COVID-19. Bratislava Med J. 2020;121(9):628-633. DOI: 10.4149/BLL_2020_10310.4149/BLL_2020_10332990010
  111. 111. Liu Y, Yang Y, Zhang C, Huang F, Wang F, Yuan J, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci. 2020;63(3):364-374. DOI: 10.1007/s11427-020-1643-810.1007/s11427-020-1643-8708856632048163
  112. 112. Ahmed S, Ansar Ahmed Z, Siddiqui I, Haroon Rashid N, Mansoor M, Jafri L. Evaluation of serum ferritin for prediction of severity and mortality in COVID-19- A cross sectional study. Ann Med Surg. 2021;63:102163. DOI: 10.1016/j.amsu.2021.02.00910.1016/j.amsu.2021.02.009787906533614024
  113. 113. Lino K, Guimarães GMC, Alves LS, Oliveira AC, Faustino R, Fernandes CS, et al. Serum ferritin at admission in hospitalized COVID-19 patients as a predictor of mortality. Brazilian J Infect Dis. 2021;25(2):101569. DOI: 10.1016/j.bjid.2021.10156910.1016/j.bjid.2021.101569795926633736948
  114. 114. Zinellu A, Paliogiannis P, Carru C, Mangoni AA. Serum amyloid A concentrations, COVID-19 severity and mortality: An updated systematic review and meta-analysis. Int J Infect Dis. 2021;105:668-674. DOI: 10.1016/j.ijid.2021.03.02510.1016/j.ijid.2021.03.025795967833737133
  115. 115. Ghahramani S, Tabrizi R, Lankarani KB, Kashani SMA, Rezaei S, Zeidi N, et al. Laboratory features of severe vs. non-severe COVID-19 patients in Asian populations: A systematic review and meta-analysis. Eur J Med Res. 2020;25:30. DOI: 10.1186/s40001-020-00432-310.1186/s40001-020-00432-3739694232746929
DOI: https://doi.org/10.2478/rrlm-2021-0022 | Journal eISSN: 2284-5623 | Journal ISSN: 1841-6624
Language: English
Page range: 255 - 269
Submitted on: Jun 14, 2021
Accepted on: Jul 10, 2021
Published on: Jul 31, 2021
Published by: Romanian Association of Laboratory Medicine
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Adina Huțanu, Anca Meda Georgescu, Akos Vince Andrejkovits, William Au, Minodora Dobreanu, published by Romanian Association of Laboratory Medicine
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.