References
- 1. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.World Health Organization. 2020 accessed 01 July 2020.
- 2. Simopoulos A. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients. 2016;8(3):128. DOI: 10.3390/nu803012810.3390/nu8030128480885826950145
- 3. Romagnolo DF, Selmin OI. Mediterranean Diet and Prevention of Chronic Diseases. Nutr Today.2017;52(5):208-22. DOI: 10.1097/NT.000000000000022810.1097/NT.0000000000000228562596429051674
- 4. De Mello AH, Uberti MF, De Farias BX, De Souza NAR, Rezin GT. N-3 PUFA and obesity: From peripheral tissues to the central nervous system. Br J Nutr. 2018;119(11):1312-13. DOI: 10.1017/S000711451800042910.1017/S000711451800042929580307
- 5. González-Périz A, Horrillo R, Ferré N, Gronert K, Dong B, Morán-Salvador E, et al. Obesity-induced insulin resistance and hepatic steatosis are alleviated by ω-3 fatty acids: a role for resolvins and protectins. FASEB J. 2009;23(6):1946-57. DOI: 10.1096/fj.08-12567410.1096/fj.08-125674269866319211925
- 6. Dangardt F, Chen Y, Gronowitz E, Dahlgren J, Friberg P, Strandvik B, et al. High Physiological Omega-3 Fatty Acid Supplementation Affects Muscle Fatty Acid Composition and Glucose and Insulin Homeostasis in Obese Adolescents. J Nutr Metab. 2012;article ID 395757. DOI: 10.1155/2012/39575710.1155/2012/395757331716722523671
- 7. Cernea S, Both E, Fodor A. The association of anthropometric parameters with markers of insulin and leptin secretion and resistance in type 2 diabetes mellitus. Rev Rom Med Lab. 2020;28(3):299-314. DOI: 10.2478/rrlm-2020-002810.2478/rrlm-2020-0028
- 8. Burrows T, Collins CE, Garg ML. Omega-3 index, obesity and insulin resistance in children. Int J Pediatr Obes. 2011;6(2-2):e532-9. DOI: 10.3109/17477166.2010.54948910.3109/17477166.2010.54948921226540
- 9. Harris WS, Del Gobbo L, Tintle NL. The Omega-3 Index and relative risk for coronary heart disease mortality: Estimation from 10 cohort studies. Atherosclerosis. 2017;262:51-4. DOI: 10.1016/j.atherosclerosis.2017.05.00710.1016/j.atherosclerosis.2017.05.00728511049
- 10. Tero-Vescan A, Vancea S, Huţanu A, Borka-Balás R, Dobreanu M. Concordance and controversy in determining the omega-3 index in plasma and red blood cells membrane. Farmacia. 2015;63(4):504-9.
- 11. Meza KS, Pérez CET, Ramírez CAS, Valencia RM, Equihua MDT. Niveles de ácido eicosapentaenoico en escolares obesos con y sin resistencia a la insulina. Nutr Hosp. 2015;31(3):1102-8.
- 12. Inoue K, Kishida K, Hirata A, Funahashi T, Shimomura I. Low serum eicosapentaenoic acid /arachidonic acid ratio in male subjects with visceral obesity. Nutr Metab. 2013;10(1):25. DOI: 10.1186/1743-7075-10-2510.1186/1743-7075-10-25360632923497138
- 13. Volpato M, Spencer JA, Race AD, Munarini A, Belluzzi A, Cockbain AJ, et al. A liquid chromatography-tandem mass spectrometry method to measure fatty acids in biological samples. J Chromatogr B Anal Technol Biomed Life Sci. 2017;1055-1056:125-34. DOI: 10.1016/j.jchromb.2017.04.03010.1016/j.jchromb.2017.04.03028467947
- 14. Dillon GP, Keegan JD, Wallace G, Yiannikouris A, Moran CA. The validation & verification of an LC/MS method for the determination of total docosahexaenoic acid concentrations in canine blood serum. Regul Toxicol Pharmacol. 2018;95:198-203. DOI: 10.1016/j. yrtph.2018.03.021
- 15. Aslan M, Özcan F, Aslan I, Yücel G. LC-MS/MS analysis of plasma polyunsaturated fatty acids in type 2 diabetic patients after insulin analog initiation therapy. Lipids Health Dis. 2018;12(1):169. DOI: 10.1186/1476-511X-12-16910.1186/1476-511X-12-169422832024195588
- 16. Serafim V, Tiugan DA, Andreescu N, Mihailescu A, Paul C, Velea I, et al. Development and validation of a LC-MS/MS-based assay for quantification of free and total omega 3 and 6 fatty acids from human plasma. Molecules. 2019;24(2):360. DOI: 10.3390/molecules2402036010.3390/molecules24020360635965630669503
- 17. Salm P, Taylor PJ, Kostner K. Simultaneous quantification of total eicosapentaenoic acid, docosahexaenoic acid and arachidonic acid in plasma by high-performance liquid chromatography-tandem mass spectrometry. Biomed Chromatogr. 2011;25(6):652-9. DOI: 10.1002/bmc.149610.1002/bmc.149620737653
- 18. Rochat B. Quantitative and Qualitative LC-High-Resolution MS: The Technological and Biological Reasons for a Shift of Paradigm. Recent Advances in Analytical Chemistry. IntechOpen; 2018. DOI: 10.5772/intechopen.8128510.5772/intechopen.81285
- 19. Prader A, Largo RH, Molinari L, Issler C. Physical growth of Swiss children from birth to 20 years of age. First Zurich longitudinal study of growth and development. Helv Paediatr Acta Suppl. 1989;52:1-125.
- 20. Vasilache SL, Mărginean CO, Boaghi A, Pop R, Banescu C, Moldovan VG, et al. Implications of visfatin genetic variants in the metabolic profile of the Romanian pediatric population. Rev Romana Med Lab. 2020;28(2):163-74. DOI: 10.2478/rrlm-2020-001510.2478/rrlm-2020-0015
- 21. Lim J, Kim J, Koo SH, Kwon GC. Comparison of triglyceride glucose index, and related parameters to predict insulin resistance in Korean adults: An analysis of the 2007-2010 Korean national health and nutrition examination survey. PLoS One. 2019;14(3):e0212963. DOI: 10.1371/journal.pone.021296310.1371/journal.pone.0212963640508330845237
- 22. Kim B, Choi HY, Kim W, Ahn C, Lee J, Kim JG, et al. The cut-off values of surrogate measures for insulin resistance in the Korean population according to the Korean Genome and Epidemiology Study (KOGES). PLoS One. 2018;13(11):e0206994. DOI: 10.1371/journal.pone.020699410.1371/journal.pone.0206994623163530419056
- 23. Simental-Mendía LE, Rodríguez-Morán M, Guerrero-Romero F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab Syndr Relat Disord. 2008;6(4):299-304. DOI: 10.1089/met.2008.003410.1089/met.2008.003419067533
- 24. Vieira-Ribeiro SA, Fonseca PCA, Andreoli CS, Ribeiro AQ, Hermsdorff HHM, Pereira PF, et al. The TyG index cutoff point and its association with body adiposity and lifestyle in children. J Pediatr.2019;95(2):217-23. DOI: 10.1016/j.jped.2017.12.01210.1016/j.jped.2017.12.01229457996
- 25. Pop RM, Pop M, Dogaru G, Bacarea VC. A web-based nutritional assessment tool. Stud Informatics Control. 2013;22(2):307-14. DOI: 10.24846/v22i3y20130710.24846/v22i3y201307
- 26. Medicines Agency E. 2** Committee for Medicinal Products for Human Use (CHMP) Guideline on bioanalytical method validation. 2011. www.ema.europa.eu/contact.
- 27. D’innocenzo S, Biagi C, Lanari M. Obesity and the mediterranean diet: A review of evidence of the role and sustainability of the mediterranean diet. Nutrients. 2019;11(6):1306. DOI: 10.3390/nu1106130610.3390/nu11061306662769031181836
- 28. Kershaw EE, Flier JS. Adipose Tissue as an Endocrine Organ. The Journal of Clinical Endocrinology & Metabolism. 2004;89(6):2548-56. DOI: 10.1210/jc.2004-039510.1210/jc.2004-039515181022
- 29. Rupérez FJ, Martos-Moreno GÁ, Chamoso-Sánchez D, Barbas C, Argente J. Insulin Resistance in Obese Children: What Can Metabolomics and Adipokine Modelling Contribute? Nutrients. 2020;12(11):3310. DOI: 10.3390/nu1211331010.3390/nu12113310769274933137934
- 30. Kalupahana NS, Claycombe KJ, Moustaid-Moussa N. (n-3) Fatty Acids Alleviate Adipose Tissue Inflammation and Insulin Resistance: Mechanistic Insights. Advances in Nutrition 2011;2(4):304-316. DOI: 10.3945/an.111.00050510.3945/an.111.000505312568022332072
- 31. Ferrante SC, Nadler EP, Pillai DK, Hubal MJ, Wang Z, Wang JM, et al. Adipocyte-derived exosomal miRNAs: a novel mechanism for obesity-related disease. Pediatr Res. 2015;77(3):447-54. DOI: 10.1038/pr.2014.20210.1038/pr.2014.202434641025518011
- 32. Kim A, Shah A, Nakamura T. Extracellular Vesicles: A Potential Novel Regulator of Obesity and Its Associated Complications. Children. 2018;5(11):152. DOI: 10.3390/children511015210.3390/children5110152626258730445758
- 33. Kanninen KM, Bister N, Koistinaho J, Malm T. Exosomes as new diagnostic tools in CNS diseases. Biochim Biophys Acta - Mol Basis Dis. 2016;1862(3):403-410. DOI: 10.1016/j.bbadis.2015.09.02010.1016/j.bbadis.2015.09.02026432482
- 34. LeBleu VS, Kalluri R. Exosomes as a Multicomponent Biomarker Platform in Cancer. Trends in Cancer. Cell Press 2020;6(9):767-774 DOI: 10.1016/j.trecan.2020.03.00710.1016/j.trecan.2020.03.00732307267
- 35. Bălașa A, Șerban G, Chinezu R, Hurghiș C, Tămaș F, Manu D. The involvement of exosomes in glioblastoma development, diagnosis, prognosis, and treatment. Vol. 10, Brain Sciences. 2020;10(8):1-16. DOI: 10.3390/brainsci1008055310.3390/brainsci10080553746394332823792
- 36. Ferrannini E, Iozzo P, Virtanen KA, Honka MJ, Bucci M, Nuutila P. Adipose tissue and skeletal muscle insulin-mediated glucose uptake in insulin resistance: Role of blood flow and diabetes. Am J Clin Nutr. 2018;108(4):749-58. DOI: 10.1093/ajcn/nqy16210.1093/ajcn/nqy16230239554
- 37. Bouché C, Serdy S, Kahn CR, Goldfine AB. The cellular fate of glucose and its relevance in type 2 diabetes. Endocrine Reviews 2004;25(5):807-30. DOI: 10.1210/er.2003-002610.1210/er.2003-002615466941
- 38. Honka MJ, Latva-Rasku A, Bucci M, Virtanen KA, Hannukainen JC, Kalliokoski KK, et al. Insulin-stimulated glucose uptake in skeletal muscle, adipose tissue and liver: A positron emission tomography study. Eur J Endocrinol. 2018;178(5):523-31. DOI: 10.1530/EJE-17-088210.1530/EJE-17-0882592001829535167
- 39. Castro-Correia C, Sousa S, Norberto S, Matos C, Domingues VF, Fontoura M, et al. The Fatty Acid Profile in Patients with Newly Diagnosed Diabetes: Why It Could Be Unsuspected. Hindawi. Int J Pediatr. 2017; article ID 64241861. DOI: 10.1155/2017/642418610.1155/2017/6424186561188229085432
- 40. Roessler C, Kuhlmann K, Hellwing C, Leimert A, Schumann J. Impact of polyunsaturated fatty acids on miRNA profiles of monocytes/macrophages and endothelial cells-a pilot study. Int J Mol Sci. 2017;18:284. DOI: 10.3390/ijms1802028410.3390/ijms18020284534382028134837
- 41. Hutanu A, Iancu M, Dobreanu M, Oprea O, Barbu S, Maier S, et al. Extended lipid profile in Romanian ischemic stroke patients in relation to stroke severity and outcome: a path analysis model. Arch Med Sci. 2019. DOI: 10.5114/aoms.2019.8930210.5114/aoms.2019.89302831441834336014
- 42. Harris WS. The omega-3 index as a risk factor for coronary heart disease. American Journal of Clinical Nutrition. Am J Clin Nutr. 2008 Jun;87(6):1997S-2002S. DOI: 10.1093/ajcn/87.6.1997S10.1093/ajcn/87.6.1997S18541601
- 43. Zhang YY, Liu W, Zhao TY, Tian HM. Efficacy of omega-3 polyunsaturated fatty acids supplementation in managing overweight and obesity: A meta-analysis of randomized clinical trials. J Nutr Heal Aging. 2017;21(2):187-92. DOI: 10.1007/s12603-016-0755-510.1007/s12603-016-0755-528112774
- 44. Micallef M, Munro I, Phang M, Garg M. Plasma n-3 polyunsaturated fatty acids are negatively associated with obesity. Br J Nutr. 2009;102(9):1370-4. DOI: 10.1017/S000711450938217310.1017/S000711450938217319454127