References
- 1. Abdel-Wahab O. Genetics of the myeloproliferative neoplasms. Curr Opin Hematol. 2011;18(2):117-23. DOI: 10.1097/MOH.0b013e328343998e10.1097/MOH.0b013e328343998e21307773
- 2. Barbui T, Thiele J, Gisslinger H, Kvasnicka HM, Vannucchi AM, Guglielmelli P, et al. The 2016 WHO classification and diagnostic criteria for myeloproliferative neoplasms: document summary and in-depth discussion. Blood Cancer J. 2018;8(2):15. DOI: 10.1038/s41408-018-0054-y10.1038/s41408-018-0054-y580738429426921
- 3. Tefferi A, Pardanani A. Myeloproliferative Neoplasms: A Contemporary Review. JAMA Oncol. 2015;1(1):97-105. DOI: 10.1001/jamaoncol.2015.8910.1001/jamaoncol.2015.8926182311
- 4. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391-405. DOI: 10.1182/blood-2016-03-64354410.1182/blood-2016-03-64354427069254
- 5. Nangalia J, Green AR. Myeloproliferative neoplasms: from origins to outcomes. Blood. 2017;130(23):2475-83. DOI: 10.1182/blood-2017-06-78203710.1182/blood-2017-06-78203729212804
- 6. Landgren O, Goldin LR, Kristinsson SY, Helgadottir EA, Samuelsson J, Bjorkholm M. Increased risks of polycythemia vera, essential thrombocythemia, and myelofibrosis among 24,577 first-degree relatives of 11,039 patients with myeloproliferative neoplasms in Sweden. Blood. 2008;112(6):2199-204. DOI: 10.1182/blood-2008-03-14360210.1182/blood-2008-03-143602253279718451307
- 7. Jones AV, Chase A, Silver RT, Oscier D, Zoi K, Wang YL, et al. JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat Genet. 2009;41(4):446-9. DOI: 10.1038/ng.33410.1038/ng.334412019219287382
- 8. Kilpivaara O, Mukherjee S, Schram AM, Wadleigh M, Mullally A, Ebert BL, et al. A germline JAK2 SNP is associated with predisposition to the development of JAK2(V617F)-positive myeloproliferative neoplasms. Nat Genet. 2009;41(4):455-9. DOI: 10.1038/ng.34210.1038/ng.342367642519287384
- 9. Olcaydu D, Harutyunyan A, Jäger R, Berg T, Gisslinger B, Pabinger I, et al. A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat Genet. 2009;41(4):450-4. DOI: 10.1038/ng.34110.1038/ng.34119287385
- 10. Jones AV, Campbell PJ, Beer PA, Schnittger S, Vannucchi AM, Zoi K, et al. The JAK2 46/1 haplotype predis-poses to MPL-mutated myeloproliferative neoplasms. Blood. 2010;3;115(22):4517-23. DOI: 10.1182/blood-2009-08-23644810.1182/blood-2009-08-236448314511420304805
- 11. Trifa AP, Banescu C, Tevet M, Bojan A, Dima D, Urian L, et al. TERT rs2736100 A>C SNP and JAK2 46/1 haplotype significantly contribute to the occurrence of JAK2 V617F and CALR mutated myeloproliferative neoplasms - a multicentric study on 529 patients. Br J Haematol. 2016;174(2):218-26. DOI: 10.1111/bjh.1404110.1111/bjh.1404127061303
- 12. Trifa AP, Banescu C, Bojan AS, Voina CM, Popa S, Visan S, et al. MECOM, HBS1L-MYB, THRB-RARB, JAK2, and TERT polymorphisms defining the genetic predisposition to myeloproliferative neoplasms: A study on 939 patients. Am J Hematol. 2018;93(1):100-6. DOI: 10.1002/ajh.2494610.1002/ajh.2494629047144
- 13. Oddsson A, Kristinsson SY, Helgason H, Gudbjartsson DF, Masson G, Sigurdsson A, et al. The germ-line sequence variant rs2736100_C in TERT associates with myeloproliferative neoplasms. Leukemia. 2014;28(6):1371-4. DOI: 10.1038/leu.2014.4810.1038/leu.2014.48405121724476768
- 14. Tapper W, Jones AV, Kralovics R, Harutyunyan AS, Zoi K, Leung W, et al. Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms. Nat Commun. 2015;6:6691. DOI: 10.1038/ncomms769110.1038/ncomms7691439637325849990
- 15. Hinds DA, Barnholt KE, Mesa RA, Kiefer AK, Do CB, Eriksson N, et al. Germ line variants predispose to both JAK2 V617F clonal hematopoiesis and myeloproliferative neoplasms. Blood. 2016;128:1121-8. DOI: 10.1182/blood-2015-06-65294110.1182/blood-2015-06-652941508525427365426
- 16. Velazquez L. The Lnk adaptor protein: a key regulator of normal and pathological hematopoiesis. Arch Immunol Ther Exp (Warsz). 2012;60(6):415-29. DOI: 10.1007/s00005-012-0194-x10.1007/s00005-012-0194-x22990499
- 17. Maslah N, Cassinat B, Verger E, Kiladjian JJ, Velazquez L. The role of LNK/SH2B3 genetic alterations in myeloproliferative neoplasms and other hematological disorders. Leukemia. 2017;31(8):1661-70. DOI: 10.1038/leu.2017.13910.1038/leu.2017.13928484264
- 18. McMullin MF, Cario H. LNK mutations and myeloproliferative disorders. Am J Hematol. 2016;91(2):248-51. DOI: 10.1002/ajh.2425910.1002/ajh.2425926660394
- 19. Rumi E, Cazzola M. Advances in understanding the pathogenesis of familial myeloproliferative neoplasms. Br J Haematol. 2017;178(5):689-98. DOI: 10.1111/bjh.1471310.1111/bjh.1471328444727
- 20. Lesteven E, Picque M, Conejero Tonetti C, Giraudier S, Varin-Blank N, Velazquez L, et al. Association of a single-nucleotide polymorphism in the SH2B3 gene with JAK2V617F-positive myeloproliferative neoplasms. Blood. 2014;123(5):794-6. DOI: 10.1182/blood-2013-10-53262210.1182/blood-2013-10-53262224482502
- 21. Chen Y, Fang F, Hu Y, Liu Q, Bu D, Tan M, et al. The Polymorphisms in LNK Gene Correlated to the Clinical Type of Myeloproliferative Neoplasms. PLoS One. 2016;11(4):e0154183. DOI: 10.1371/journal. pone.0154183
- 22. Olkhovskiy IA, Gorbenko AS, Stolyar MA, Vasiliev EV, Mikhalev MA, Tabakova KA. T784C LNK gene polymorphism and the risk of myeloproliferative disorders. Leuk Lymphoma. 2019;60(1):277-8. DOI: 10.1080/10428194.2018.145960410.1080/10428194.2018.1459604
- 23. Jones AV, Kreil S, Zoi K, Waghorn K, Curtis C, Zhang L, et al. Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood. 2005;106:2162-8. DOI: 10.1182/blood-2005-03-132010.1182/blood-2005-03-1320
- 24. Jovanovic JV, Ivey A, Vannucchi AM, Lippert E, Oppliger Leibundgut E, Cassinat B, et al. Establishing optimal quantitative-polymerase chain reaction assays for routine diagnosis and tracking of minimal residual disease in JAK2-V617F-associated myeloproliferative neoplasms: a joint European LeukemiaNet/MPN&MPNr-EuroNet (COST action BM0902) study. Leukemia. 2013;27:2032-9. DOI: 10.1038/leu.2013.21910.1038/leu.2013.219
- 25. Trifa AP, Cucuianu A, Popp RA. Familial Essential Thrombocythemia Associated with MPL W515L Mutation in Father and JAK2 V617F Mutation in Daughter. Case Rep Hematol 2014;2014:841787. DOI: 10.1155/2014/84178710.1155/2014/841787
- 26. van Dongen JJ, Macintyre EA, Gabert JA, Delabesse E, Rossi V, Saglio G, et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia. 1999;13(12):1901-28. DOI: 10.1038/sj.leu.240159210.1038/sj.leu.2401592
- 27. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics research. Behav Brain Res. 2001;125(1-2):279-84. DOI: 10.1016/S0166-4328(01)00297-210.1016/S0166-4328(01)00297-2
- 28. R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
- 29. Brian G. Kral, Lewis C. Becker, Chapter 8 - Genetics of Coronary Disease, Editor(s): Wilbert S. Aronow, John Arthur McClung, Translational Research in Coronary Artery Disease, Academic Press, 2016, Pages 81-101. DOI: 10.1016/B978-0-12-802385-3.00008-510.1016/B978-0-12-802385-3.00008-5