References
- 1. Imbach P, Kuhne T, Arceci RJ. Introduction: Incidence and management of childhood cancer. In Imbach P, Kuhne T, Arceci RJ (editors). Pediatric Oncology, a comprehensive guide. Springer-Verlag Berlin Heidelberg. 2011; XVII-IX DOI: 10.1007/978-3-642-20359-610.1007/978-3-642-20359-6
- 2. Sági JC, Egyed B, Kelemen A, Kutszegi N, Gezsi A, Herlitschke MA, et al. Possible roles of genetic variations in chemotherapy related cardiotoxicity in pediatric acute lymphoblastic leukemia and osteosarcoma. BMC Cancer. 2018; 18(1):704 DOI: 10.1186/s12885-018-4629-610.1186/s12885-018-4629-6
- 3. Spector LG, Ross JA, Robison LL, Bhatia S. Chapter 3. Epidemiology and etiology. In Pui CH (editor). Childhood Leukemias. Cambridge University Press, New York, USA. 2006; 48-66 DOI: 10.1017/CBO9780511471001.00410.1017/CBO9780511471001.004
- 4. Silverman LB. Chapter 10: Acute lymphoblastic leukemia. In Orkin SH, Fisher DE, Look AT, Lux SE, Ginsburg D, Nathan DG (editors). Oncology of Infancy and Childhood. Elsevier, Philadelphia, USA. 2009; 297-330 DOI: 10.1016/B978-1-4160-3431-5.00010-810.1016/B978-1-4160-3431-5.00010-8
- 5. Reulen RC, Winter DL, Frobisher C, Lancashire ER, Stiller CA, Jenney ME, et al. Long-term cause-specific mortality among survivors of childhood cancer. JAMA. 2010; 304:172-9 DOI: 10.1001/jama.2010.92310.1001/jama.2010.923
- 6. Harake D, Franco VI, Henkel JM, Miller TL, Lipshultz SE. Cardiotoxicity in childhood cancer survivors: strategies for prevention and management. Future Cardiol. 2012; 8(4):647-70 DOI: 10.2217/fca.12.4410.2217/fca.12.44
- 7. Smith OP, Hann IM. Chapter 20. Clinical features and therapy of lymphoblastic leukemia. In Arceci RJ., Hann IM, Smith OP (editors). Pediatric Hematology. Blackwell Publishing, Massachusettes, USA. 2006; 450-81 DOI: 10.1002/9780470987001.ch2010.1002/9780470987001.ch20
- 8. Christenson ES, James T, Agrawal V, Park BH. Use of biomarkers for the assessment of chemotherapy-induced cardiac toxicity. Clin Biochem. 2014; 48(0):223-35 DOI: 10.1016/j.clinbiochem.2014.10.01310.1016/j.clinbiochem.2014.10.013
- 9. Mitry MA, Edwards JG. Doxorubicin induced heart failure: Phenotype and molecular mechanisms. Int J Cardiol Heart Vasc. 2015; 10:17-24 DOI: 10.1016/j. ijcha.2015.11.004
- 10. Wang GX, Wang YX, Zhou XB, Korth M. Effects of doxorubicinol on excitation-contraction coupling in guinea pig ventricular myocytes. Eur J Pharmacol. 2001; 423:99-107 DOI: 10.1016/S0014-2999(01)01096-210.1016/S0014-2999(01)01096-2
- 11. Van der Pal HJ, Van Dalen EC. High risk of symptomatic cardiac events in childhood cancer survivors. J Clin Oncol. 2012; 30(13):1429-37 DOI: 10.1200/JCO.2010.33.473010.1200/JCO.2010.33.473022473161
- 12. Radu LE, Beldiman A, Ghiorghiu I, Oprescu A, Arion C, Colita A. The use of biomarkers in detecting subclinical cardiotoxicity in doxorubicin-based treatment for paediatric patients with acute lymphoblastic leukaemia. Rev Rom Med Lab. 2017; 25(2):157-64 DOI: 10.1515/rrlm-2017-001410.1515/rrlm-2017-0014
- 13. Moazeni S, Cadeiras M, Yanh EH, Deng MC, Nguyen KL. Anthracycline induced cardiotoxicity: biomarkers and „Omics” technology in the era of patient specific care. Clin Transl Med. 2017; 6:17 DOI: 10.1186/s40169-017-0148-310.1186/s40169-017-0148-3542536128493232
- 14. Pizzino F, Vizzari G, Qamar R, Bomzer C, Carerj S, Zito C, et al. Multumodality Imaging in Cardiooncology. J Oncol. 2015; 11:263950 DOI: 10.1155/2015/26395010.1155/2015/263950453774726300915
- 15. Speyer SL, Kobrinsky B, Ewer MS. Chapter 63: Cardiac effects of cancer therapy. In Abeloff MD, Armitage JO, Niederhuber JE, Kastan M, Mckenna WG (editors). Abeloff’s Clinical Oncology, 4th Edition. Elsevier, Philadelphia, USA. 2013; 983-96
- 16. Gillespie HS, McGann CJ, Wilson BD. Noninvasive diagnosis of chemotherapy related cardiotoxicity. Curr Cardio Rev. 2011; 7:234-44 DOI: 10.2174/15734031179996067210.2174/157340311799960672332244122758624
- 17. Lipshultz SE, Rusconi P, Scully RE. Chapter 18: assessment of cardiotoxicity during anti-cancer therapy. In Januzzi JL, Bayes-Genis A (editors). NT-proBNP as a Biomarker in Cardiovascular Diseases. Prous Science SA, Barcelona, Spain. 2007; 193-8
- 18. Vejpongsa P, Yeh ETH. Prevention of anthracycline-induced cardiotoxicity: challenges and opportunities. J Am Coll Cardiol. 2014; 64(9):938-45 DOI: 10.1016/j. jacc.2014.06.1167
- 19. Lipshultz SE, Lipsitz SR, Kutok JL, Miller TL, Colan SD, Neuberg DS, et al. Impact of hemochromatosis gene mutations on cardiac status in doxorubicin-treated survivors of childhood high-risk leukemia. Cancer. 2013; 119(19):3555-62 DOI: 10.1002/cncr.2825610.1002/cncr.28256378806523861158
- 20. Gianni L, Herman EH, Lipshultz SE, Minotti G, Sarvazyan N, Sawyer DB. Anthracycline cardiotoxicity: From Bench to bedside. J Clin Oncol. 2008; 26(22):3777-84 DOI: 10.1200/JCO.2007.14.940110.1200/JCO.2007.14.9401301829018669466
- 21. Huang C, Zhang X, Ramil JM, Rikka S, Kim L, Lee Y, et al. Juvenile exposure to anthracyclines impairs cardiac progenitor cell function and vascularization resulting in greater susceptibility to stress-induced myocardial injury in adult mice. Circulation. 2010; 121:675-83 DOI: 10.1161/CIRCULATIONAHA.109.90222110.1161/CIRCULATIONAHA.109.902221283427120100968
- 22. Hahn VS, Lenihan DJ, Ky B. Cancer therapy-induced cardiotoxicity: basic mecanisms and potential cardioprotective therapies. J Am Heart Assoc. 2014; 3:e000665 DOI: 10.1161/JAHA.113.00066510.1161/JAHA.113.000665418751624755151
- 23. Blanco JG, Sun CL, Landler W, Chen L, Esparza-Duran D, Leisenring W, et al. Anthracycline-related cardiomyopathy after childhood cancer: role of polymorphisms in carbonyl reductase genes--a report from the Children’s Oncology Group. J Clin Oncol. 2012; 30(13):1415-21 DOI: 10.1200/JCO.2011.34.898710.1200/JCO.2011.34.8987338311722124095
- 24. Fulbright JM. Review of Cardiotoxicity in Pediatric Cancer Patients: During and after Therapy. Cardiol Res Pract. 2011; 942090 DOI: 10.4061/2011/94209010.4061/2011/942090310232421637324
- 25. Galderisi M, Marra F, Esposito R, Lomoriello VS, Pardo M, de Divitiis O. Cancer therapy and cardiotoxicity: The need of serial Doppler echocardiography. Cardiovasc Ultrasound. 2007; 5:4 DOI: 10.1186/1476-7120-5-410.1186/1476-7120-5-4179423317254324
- 26. Martins de Souza D. Is the word „biomarker” being properly used by proteomics research in neuroscience? Eur Arch Psychiatry Clin Neurosc. 2010; 260:561-2 DOI: 10.1007/s00406-010-0105-210.1007/s00406-010-0105-2295363320155362
- 27. Horacek JM, Vasatova M, Pudil R, Tichy M, Zak P, Jakl M, et al. Biomarkers for the early detection of anthracycline-induced cardiotoxicity: current status. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2014; 158(4):511-7 DOI: 10.5507/bp.2014.00410.5507/bp.2014.00424457832
- 28. Sheppard RJ, Berger J, Sebag IA. Cardiotoxicity of cancer therapeutics: current issues in screening, prevention and therapy. Frontiers in Pharmacology. 2013; 4:19 DOI: 10.3389/fphar.2013.0001910.3389/fphar.2013.00019359474123487556
- 29. De Lemos JA. Increasingly sensitive assays for cardiac troponins: a review. Jama. 2013; 309(21):2262-9 DOI: 10.1001/jama.2013.580910.1001/jama.2013.580923736735
- 30. Oztarhan K, Guler S, Aktas B, Arsian M, Salcioglu Z, Aydogan G. The value of echocardiography versus cardiac troponin i levels in the early detection of anthracycline cardiotoxicity in childhood acute leukemia: Prospective evaluation of a 7-year-long clinical follow-up. Pediatr Hematol Oncol. 2011; 28(5):380-94 DOI: 10.3109/08880018.2011.56377210.3109/08880018.2011.56377221699467
- 31. Cardinale D, Sandri MT, Colombo A, Colombo N, Boeri M, Lamantia G, et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation. 2004; 109(22):2749-54 DOI: 10.1161/01. CIR.0000130926.51766.CC
- 32. Lee HS, Son CB, Shin SH, Kim YS. Clinical correlation between brain natriuretic peptide and anthracycline-induced cardiac toxicity. Cancer Res Treat. 2008; 40(3):121-6 DOI: 10.4143/crt.2008.40.3.12110.4143/crt.2008.40.3.121269746819688118
- 33. Soker M, Kervancioglu M. Plasma concentration on NT-pro-BNP and cardiac troponin-I in relation to doxorubicin-induced cardiomyopathy and cardiac function in childhood malignancy. Saudi Med J. 2005; 26(8):1197-202
- 34. Specchia G, Buquicchio C, Pansini N, di Serio F, Liso V, Pastore D, et al. Monitoring of cardiac function on the basis of serum troponin I levels in patients with acute leukemia treated with anthracyclines. J Lab Clin Med. 2005; 145(4):212-20 DOI: 10.1016/j.lab.2005.02.00310.1016/j.lab.2005.02.00315962840
- 35. Tian S, Hirshfield KM, Jabbour SK, Toppmeyer D, Haffty B, Gm Khan AJ, et al. Serum Biomarkers for the Detection of Cardiac Toxicity after Chemotherapy and Radiation Therapy in Breast Cancer Patients. Front Oncol. 2014; 4:277 DOI: 10.3389/fonc.2014.0027710.3389/fonc.2014.00277419117125346912
- 36. Romano S, Fratini S, Ricevuto E, Procaccini V, Stifano G, Mancini M, et al. Serial measurements of NT-proBNP are predictive of not-high-dose anthracycline cardiotoxicity in breast cancer patients. Br J Cancer. 2011; 105(11):1663-8 DOI: 10.1038/bjc.2011.43910.1038/bjc.2011.439324259722068815
- 37. Cil T, Kaplan AM, Altintas A, Akin AM, Alan S, Isikdogan A. Use of N-terminal pro-brain natriuretic peptide to assess left ventricular function after adjuvant doxorubicin therapy in early breast cancer patients: a prospective series. Clin Drug Investig. 2009; 29(2):131-7 DOI: 10.2165/0044011-200929020-0000710.2165/0044011-200929020-0000719133708
- 38. Feola M, Garrone O, Occelli M, Francini A, Biggi A, Visconti G, et al. Cardiotoxicity after anthracycline chemotherapy in breast carcinoma: effects on left ventricular ejection fraction, troponin I and brain natriuretic peptide. Int J Cardiol. 2011; 148(2):194-8 DOI: 10.1016/j.ijcard.2009.09.56410.1016/j.ijcard.2009.09.56419945181
- 39. Garrone O, Crosetto N, lo Nigro C, Carzeddu T, Vivenza D, Monteverde M, et al. Prediction of anthracycline cardiotoxicity after chemotherapy by biomarkers kinetic analysis. Cardiovasc Toxicol. 2012; 12(2):135-42 DOI: 10.1007/s12012-011-9149-410.1007/s12012-011-9149-422189487
- 40. El-Shitany NA, Tolba OA, El-Shanshory MR, El-Ha-wary EE. Protective effect of carvedilol on adriamycin-induced left ventricular dysfunction in children with acute lymphoblastic leukemia. J Card Fail. 2012; 18(8):607-13 DOI: 10.1016/j.cardfail.2012.06.41610.1016/j.cardfail.2012.06.41622858075
- 41. Xu XY, Huang MR, Tang JY, Zhang YQ, Wu YR, Zhou M. Evaluation of early monitoring of cardiotoxicity induced by anthracyclines. Zhongguo Dand Dai Er Ke Za Zhi. 2011; 13(6):490-4
- 42. Sawaya H, Sebag IA, Plana JC, Januzzi JL, Ky B, Cohen V, et al. Early detection and prediction of cardiotoxicity in chemotherapy-treated patients. Am J Cardiol. 2011; 107(9):1375-80 DOI: 10.1016/j.amjcard.2011.01.00610.1016/j.amjcard.2011.01.006370331421371685
- 43. Kang Y, Xu X, Cheng L, Li L, Sun M, Chen H, et al. Two-dimensional speckle tracking echocardiography combined with high-sensitive cardiac troponin T in early detection and prediction of cardiotoxicity during epirubicine-based chemotherapy. Eur J Heart Fail. 2014; 16(3):300-8 DOI: 10.1002/ejhf.810.1002/ejhf.824464946
- 44. ElGhandour AH, Sorady ME, Azab S, ElRahman M. Human heart-type fatty acid-binding protein as an early diagnostic marker of doxorubicin cardiac toxicity. Hematol Rev. 2009; 1(1):e6 DOI: 10.4081/hr.2009.e610.4081/hr.2009.e6
- 45. Sayed-Ahmed MM, Al-Shabanah OA, Hafez MM, Aleisa AM, Al-Rejale SS. Inhibition of gene expression of heart fatty acid binding protein and organic cation-carnitine transporter in doxorubicin cardiomyopathic rat model. Eur J Pharmacol. 2010; 640:143-9 DOI: 10.1016/j.ejphar.2010.05.00210.1016/j.ejphar.2010.05.00220470772
- 46. Ozturk G, Tavil B, Ozguner M, Ginis Z, Erden G, Turic B, et al. Evaluation of Cardiac Markers in Children Undergoing Hematopoietic Stem Cell Transplantation. J Clin Lab Anal. 2015; 29(4):259-62 DOI: 10.1002/jcla.2176010.1002/jcla.21760680673324840114
- 47. Horacek JM, Vasatova M, Tichy M, Pudli R, Jebavy L, Maly J. The use of cardiac biomarkers in detection of cardiotoxicity associated with conventional and high-dose chemotherapy for acute leukemia. Exp Oncol. 2010; 32(2):97-9
- 48. Lai R, Wang X, Zhang X, Lin WQ, Rong TH. Heart fatty acid-binding protein may not be an early biomarker for anthracycline-induced cardiotoxicity in rabbits. Med Oncol. 2012; 29(3):2303-8 DOI: 10.1007/s12032-011-9843-x10.1007/s12032-011-9843-x21308490
- 49. Ky B, Putt M, Sawaya H, French B, Januzzi JL Jr, Sebag IA, et al. Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab. J Am Coll Cardiol. 2014; 63(8):809-16 DOI: 10.1016/j.jacc.2013.10.06110.1016/j.jacc.2013.10.061
- 50. Fichtlscherer S, Zeiher AM, Dimmeler S. Circulating microRNAs: biomarkers or mediators of cardiovascular diseases? Arterioscler Thromb Vasc Biol. 2011; 31(11):2383-90 DOI: 10.1161/ATVBAHA.111.22669610.1161/ATVBAHA.111.226696
- 51. Lipshultz SE, Scully RE, Lipsitz SR, Sallan SE, Silverman LB, Miller TL, et al. Assessment of dexrazoxane as a cardioprotectant in doxorubicin-treated children with high-risk acute lymphoblastic leukaemia: long-term follow-up of a prospective, randomised, multi-centre trial. Lancet Oncol. 2010; 11(10):950-61 DOI: 10.1016/S1470-2045(10)70204-710.1016/S1470-2045(10)70204-7
- 52. Monti M, Terzuoli E, Ziche M, Morbidelli L. The sulphydryl containing ACE inhibitor Zofenoprilat protects coronary endothelium from Doxorubicin-induced apoptosis. Pharmacol Res. 2013; 76:171-81 DOI: 10.1016/j. phrs.2013.08.003
- 53. Konishi M, Haraguchi G, Ohigashi H, Ishihara R, Salto K, Nakano Y, et al. Adiponectin protects against doxorubicin-induced cardiomyopathy by anti-apoptotic effects through AMPK upregulation. Cardiovasc Res. 2011; 89(2):309-19 DOI: 10.1093/cvr/cvq33510.1093/cvr/cvq33520978005
- 54. Viner RM, Hsia Y, Tomsic T, Wong I. Efficacy and safety of anti-obesity drugs in children and adolescents: systematic review and meta-analysis. Obes Rev. 2010; 11:593-602 DOI: 10.1111/j.1467-789X.2009.00651.x10.1111/j.1467-789X.2009.00651.x19922432