Have a personal or library account? Click to login
Antibacterial activity of selected snake venoms on pathogenic bacterial strains Cover

Antibacterial activity of selected snake venoms on pathogenic bacterial strains

Open Access
|Jul 2019

References

  1. 1. Laxminarayan R, Duse A, Wattal C, Zaidi AKM, Wertheim HFL, Sumpradit N, et al. Antibiotic resistance-the need for global solutions. Lancet Infect Dis. 2013;13(12):1057–98. DOI: 10.1016/S1473-3099(13)70318-910.1016/S1473-3099(13)70318-9
  2. 2. Exner M, Bhattacharya S, Christiansen B, Gebel J, Goroncy-Bermes P, Hartemann P, et al. Antibiotic resistance: What is so special about multidrug-resistant Gram-negative bacteria? GMS Hyg Infect Control. 2017;12:Doc05.
  3. 3. Munteanu F, Gligor R, Crîsnic I, Costache CA, Colosi IA. Antimicrobial activity of Melampyrum cristatum, Melampyrum bihariense and Melampyrum arvense tinctures. African J Pharm Pharmacol. Academic Journals; 2012 Oct 31;6(40):2808–12.10.5897/AJPP12.404
  4. 4. Tănase C, Coşarcă S, Toma F, Mare A, Man A, Miklos A, et al. Antibacterial activities of beech bark (Fagus sylvatica L.) polyphenolic extract. Environ Eng Manag J. 2018;17(4):877-84. DOI: 10.30638/eemj.2018.08810.30638/eemj.2018.088
  5. 5. Man A, Santacroce L, Jacob R, Mare A, Man L. Antimicrobial Activity of Six Essential Oils Against a Group of Human Pathogens: A Comparative Study. Pathogens. 2019 Jan 28;8(1):15. DOI: 10.3390/pathogens801001510.3390/pathogens8010015647118030696051
  6. 6. Han SM, Kim JM, Hong IP, Woo SO, Kim SG, Jang HR, et al. Antibacterial activity and antibiotic-enhancing effects of honeybee venom against methicillin-resistant staphylococcus aureus. Molecules. 2016; DOI: 10.3390/molecules2101007910.3390/21010079
  7. 7. Dubovskii P V., Ignatova AA, Volynsky PE, Ivanov IA, Zhmak MN, Feofanov A V., et al. Improving therapeutic potential of antibacterial spider venom peptides: coarse-grain molecular dynamics guided approach. Future Med Chem. 2018 Oct 1;10(19):2309-22. DOI: 10.4155/fmc-2018-017010.4155/fmc-2018-017030215282
  8. 8. de Oliveira Junior NG, e Silva Cardoso MH, Franco OL. Snake venoms: Attractive antimicrobial protein-aceous compounds for therapeutic purposes. Cell Mol Life Sci. 2013;70(24):4645–58. DOI: 10.1007/s00018-013-1345-x10.1007/s00018-013-1345-x23657358
  9. 9. Harvey AL. Toxins and drug discovery. Toxicon. 2014;92:193–200. DOI: 10.1016/j.toxicon.2014.10.02010.1016/j.toxicon.2014.10.02025448391
  10. 10. Koh CY, Kini RM. From snake venom toxins to therapeutics – Cardiovascular examples. Toxicon. 2012;59(4):497–506. DOI: 10.1016/j.toxicon.2011.03.01710.1016/j.toxicon.2011.03.01721447352
  11. 11. Pennington MW, Czerwinski A, Norton RS. Peptide therapeutics from venom: Current status and potential. Bioorganic Med Chem. 2018 Jun 1;26(10):2738-58. DOI: 10.1016/j.bmc.2017.09.02910.1016/j.bmc.2017.09.02928988749
  12. 12. McCleary RJR, Kini RM. Snake bites and hemostasis/thrombosis. Thromb Res. 2013;132:642–6. DOI: 10.1016/j.thromres.2013.09.03110.1016/j.thromres.2013.09.031
  13. 13. Waheed H, Moin SF, Choudhary MI. Snake Venom: From Deadly Toxins to Life-saving Therapeutics. Curr Med Chem. 2017;24(17):1874-91. DOI: 10.2174/092986732466617060509154610.2174/0929867324666170605091546
  14. 14. Calderon LA, Sobrinho JC, Zaqueo KD, De Moura AA, Grabner AN, Mazzi MV., et al. Antitumoral activity of snake venom proteins: New trends in cancer therapy. Biomed Res Int. 2014;2014:1–19. DOI: 10.1155/2014/20363910.1155/2014/203639
  15. 15. Shanbhag VKL. Applications of snake venoms in treatment of cancer. Asian Pac J Trop Biomed. 2015;5(4):275–6. DOI: 10.1016/S2221-1691(15)30344-010.1016/S2221-1691(15)30344-0
  16. 16. Gazerani P, Cairns BE. Venom-based biotoxins as potential analgesics. Expert Rev Neurother. 2014;14(11):1261–74. DOI: 10.1586/14737175.2014.96251810.1586/14737175.2014.962518
  17. 17. Stiles BG, Sexton FW, Weinstein SA. Antibacterial effects of different snake venoms: Purification and characterization of antibacterial proteins from Pseudechis australis (Australian king brown or mulga snake) venom. Toxicon. 1991;29(9):1129–41. DOI: 10.1016/0041-0101(91)90210-I10.1016/0041-0101(91)90210-
  18. 18. Talan DA, Citron DM, Overturf GD, Singer B, Froman P, Goldstein EJC. Antibacterial activity of crotalid venoms against oral snake flora and other clinical bacteria. J Infect Dis. 1991;164(1):195–8. DOI: 10.1093/infdis/164.1.19510.1093/infdis/164.1.1952056205
  19. 19. Samy RP, Gopalakrishnakone P, Thwin MM, Chow TKV, Bow H, Yap EH, et al. Antibacterial activity of snake, scorpion and bee venoms: A comparison with purified venom phospholipase A2 enzymes. J Appl Microbiol. 2007;102(3):650–9. DOI: 10.1111/j.1365-2672.2006.03161.x10.1111/j.1365-2672.2006.03161.x17309613
  20. 20. Montecucco C, Gutiérrez JM, Lomonte B. Cellular pathology induced by snake venom phospholipase A2 myotoxins and neurotoxins: Common aspects of their mechanisms of action. Cell Mol Life Sci. 2008;65(18):2897–912. DOI: 10.1007/s00018-008-8113-310.1007/s00018-008-8113-318563294
  21. 21. Gutiérrez JM, Lomonte B. Phospholipases A2: Unveiling the secrets of a functionally versatile group of snake venom toxins. Toxicon. 2013;62:27–39. DOI: 10.1016/j.toxicon.2012.09.00610.1016/j.toxicon.2012.09.00623025922
  22. 22. Rodrigues RS, Izidoro LFM, de Oliveira RJ, Sampaio S V, Soares AM, Rodrigues VM. Snake venom phospholipases A2: a new class of antitumor agents. Protein Pept Lett. 2009;16(8):894–8. DOI: 10.2174/09298660978892326610.2174/09298660978892326619689415
  23. 23. Samy RP, Gopalakrishnakone P, Stiles BG, Girish KS, Swamy SN, Hemshekhar M, et al. Snake venom phospholipases A(2): a novel tool against bacterial diseases. Curr Med Chem. 2012;19(36):6150–62. DOI: 10.2174/092986731120906615010.2174/0929867311209066150
  24. 24. Xu C, Ma D, Yu H, Li Z, Liang J, Lin G, et al. A bactericidal homodimeric phospholipases A2 from Bungarus fasciatus venom. Peptides. 2007;28(5):969–73. DOI: 10.1016/j.peptides.2007.02.00810.1016/j.peptides.2007.02.00817383773
  25. 25. Markland FS, Swenson S. Snake venom metalloproteinases. Toxicon. 2013;62:3–18. DOI: 10.1016/j.toxicon.2012.09.00410.1016/j.toxicon.2012.09.00423000249
  26. 26. Samy RP, Gopalakrishnakone P, Chow VTK, Ho B. Viper metalloproteinase (Agkistrodon halys Pallas) with antimicrobial activity against multi-drug resistant human pathogens. J Cell Physiol. 2008;216(1):54–68. DOI: 10.1002/jcp.2137310.1002/jcp.2137318297685
  27. 27. Izidoro LFM, Sobrinho JC, Mendes MM, Costa TR, Grabner AN, Rodrigues VM, et al. Snake venom L-amino acid oxidases: Trends in pharmacology and biochemistry. Biomed Res Int. 2014;2014:1–19. DOI: 10.1155/2014/19675410.1155/2014/196754397149824738050
  28. 28. Zhang H, Yang Q, Sun M, Teng M, Niu L. Hydrogen peroxide produced by two amino acid oxidases mediates antibacterial actions. J Microbiol. 2004;42(4):336–9.
  29. 29. CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Approved Standard-Tenth Edition. CLSI document M07-A10. 2015. 1-87 p.
  30. 30. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680–5. DOI: 10.1038/227680a010.1038/227680a05432063
  31. 31. The Reptile Database [Internet]. [cited 2019 Jan 28]. Available from: http://www.reptile-database.org/
  32. 32. Fry BG, Wickramaratna JC, Hodgson WC, Alewood PF, Kini RM, Ho H, et al. Electrospray liquid chromatography/mass spectrometry fingerprinting of Acanthophis (death adder) venoms: Taxonomic and toxino-logical implications. Rapid Commun Mass Spectrom. 2002;16:600–8. DOI: 10.1002/rcm.61310.1002/rcm.61311870898
  33. 33. Petras D, Heiss P, Harrison RA, Süssmuth RD, Calvete JJ. Top-down venomics of the East African green mamba, Dendroaspis angusticeps, and the black mamba, Dendroaspis polylepis, highlight the complexity of their toxin arsenals. J Proteomics. 2016;146:148–64. DOI: 10.1016/j.jprot.2016.06.01810.1016/j.jprot.2016.06.01827318176
  34. 34. Huang HW, Liu BS, Chien KY, Chiang LC, Huang SY, Sung WC, et al. Cobra venom proteome and glycome determined from individual snakes of Naja atra reveal medically important dynamic range and systematic geographic variation. J Proteomics. 2015;128:92–104. DOI: 10.1016/j.jprot.2015.07.01510.1016/j.jprot.2015.07.01526196238
  35. 35. Tan KY, Tan CH, Fung SY, Tan NH. Venomics, lethality and neutralization of Naja kaouthia (monocled cobra) venoms from three different geographical regions of Southeast Asia. J Proteomics. 2015;120:105–25. DOI: 10.1016/j.jprot.2015.02.01210.1016/j.jprot.2015.02.01225748141
  36. 36. Osipov A V., Levashov MY, Tsetlin VI, Utkin YN. Cobra venom contains a pool of cysteine-rich secretory proteins. Biochem Biophys Res Commun. 2005;328:177–82. DOI: 10.1016/j.bbrc.2004.12.15410.1016/j.bbrc.2004.12.15415670767
  37. 37. Modahl CM, Mukherjee AK, Mackessy SP. An analysis of venom ontogeny and prey-specific toxicity in the Monocled Cobra (Naja kaouthia). Toxicon. 2016;119:8–20. DOI: 10.1016/j.toxicon.2016.04.04910.1016/j.toxicon.2016.04.04927163885
  38. 38. Serrano SMT. The long road of research on snake venom serine proteinases. Toxicon. 2013;62:19–26. DOI: 10.1016/j.toxicon.2012.09.00310.1016/j.toxicon.2012.09.00323010164
  39. 39. Calvete JJ, Fasoli E, Sanz L, Boschetti E, Righetti PG. Exploring the venom proteome of the western diamondback rattlesnake, Crotalus atrox, via snake venomics and combinatorial peptide ligand library approaches. J Proteome Res. 2009;8:3055–67. DOI: 10.1021/pr900249q10.1021/pr900249q19371136
  40. 40. Weiss JP. Molecular determinants of bacterial sensitivity and resistance to mammalian Group IIA phospholipase A2. Biochim Biophys Acta - Biomembr. 2015;1848:3072–7. DOI: 10.1016/j.bbamem.2015.05.01810.1016/j.bbamem.2015.05.018460585626079797
  41. 41. Sartingen S, Rozdzinski E, Muscholl-Silberhorn A, Marre R. Aggregation substance increases adherence and internalization, but not translocation, of Enterococcus faecalis through different intestinal epithelial cells in vitro. Infect Immun. 2000 Oct;68(10):6044-7. DOI: 10.1128/IAI.68.10.6044-6047.200010.1128/IAI.68.10.6044-6047.200010157110992519
  42. 42. Istivan TS, Coloe PJ. Phospholipase A in Gram-negative bacteria and its role in pathogenesis. Microbiology. 2006;152:1263–74. DOI: 10.1099/mic.0.28609-010.1099/mic.0.28609-016622044
  43. 43. Klockgether J, Tümmler B. Recent advances in understanding Pseudomonas aeruginosa as a pathogen. F1000Research. 2017;6(1261):1–10. DOI: 10.12688/f1000research.10506.110.12688/f1000research.10506.1553803228794863
  44. 44. Tytgat HLP, Lebeer S. The Sweet Tooth of Bacteria: Common Themes in Bacterial Glycoconjugates. Micro-biol Mol Biol Rev. 2014;78(3):372–417. DOI: 10.1128/MMBR.00007-1410.1128/MMBR.00007-14418768725184559
  45. 45. Lomonte B, Tsai WC, Ure-a-Diaz JM, Sanz L, Mora-Obando D, Sánchez EE, et al. Venomics of new world pit vipers: Genus-wide comparisons of venom proteomes across agkistrodon. J Proteomics. 2014;96:103–16. DOI: 10.1016/j.jprot.2013.10.03610.1016/j.jprot.2013.10.036429445824211403
  46. 46. Nunes E dos S, de Souza MAA, Vaz AF de M, Santana GM de S, Gomes FS, Coelho LCBB, et al. Purification of a lectin with antibacterial activity from Both-rops leucurus snake venom. Comp Biochem Physiol - B Biochem Mol Biol. 2011;159:57–63. DOI: 10.1016/j.cbpb.2011.02.00110.1016/j.cbpb.2011.02.00121334449
  47. 47. Sartim MA, Sampaio S V. Snake venom galactoside-binding lectins: A structural and functional overview. J Venom Anim Toxins Incl Trop Dis. 2015;21(35):1–11. DOI: 10.1186/s40409-015-0038-310.1186/s40409-015-0038-3458321426413085
DOI: https://doi.org/10.2478/rrlm-2019-0015 | Journal eISSN: 2284-5623 | Journal ISSN: 1841-6624
Language: English
Page range: 305 - 317
Submitted on: Sep 24, 2018
Accepted on: Feb 7, 2019
Published on: Jul 30, 2019
Published by: Romanian Association of Laboratory Medicine
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Francisc Andrei Boda, Anca Mare, Zoltán István Szabó, Lavinia Berta, Augustin Curticapean, Maria Dogaru, Adrian Man, published by Romanian Association of Laboratory Medicine
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.