Have a personal or library account? Click to login
Could fibrinogen and hsCRP be useful for assessing personal risk in workers exposed to a mixture of ultrafine particles and organic solvents? Cover

Could fibrinogen and hsCRP be useful for assessing personal risk in workers exposed to a mixture of ultrafine particles and organic solvents?

Open Access
|May 2018

References

  1. 1. Bekker C, Brouwer DH, Tielemans E, Pronk A. Industrial production and professional application of manufactured nanomaterials-enabled end products in Dutch industries: potential for exposure. Ann Occup Hyg.2013;57(3):314-27.
  2. 2. Bahadar H. Mostafalou S, Abdollahi M. Current understandings and perspectives on non-Cancer health effects of benzene: A global concern. Toxicol Appl Pharmacol. 2014;276(2):83-94. DOI: 10.1016/j.taap.2014.02.01210.1016/j.taap.2014.02.01224589379
  3. 3. Baker EL. A Review of Recent Research on Health Effects of Human Occupational Exposure to Organic Solvents. J Occup Environ Med. 1994;36(10):1079-92. DOI: 10.1097/00043764-199410000-0001010.1097/00043764-199410000-000107830166
  4. 4. Mohammadi S, Mehrparvar A, Labbafinejad Y, Attarchi MS. The effect of exposure to a mixture of organic solvents on liver enzymes in an auto manufacturing plant. J Public Health. 2010;18(6):553-557. DOI: 10.1007/s10389-010-0340-z10.1007/s10389-010-0340-z
  5. 5. Mohammadi S, Labbafinejad Y, Attarchi M. Combined Effects of Ototoxic Solvents and Noise on Hearing in Automobile Plant Workers in Iran. Arh Hig Rada Toksikol. 2010;61(3):267-274. DOI: 10.2478/10004-1254-61-2010-201310.2478/10004-1254-61-2010-201320860967
  6. 6. Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev. 2010;4(8):118-126. DOI: 10.4103/0973-7847.7090210.4103/0973-7847.70902324991122228951
  7. 7. Hesterberg TW, Long CM, Lapin CA, Hamade AK, Valberg PA. Diesel exhaust particulate (DEP) and nanoparticle exposures: what do DEP human clinical studies tell us about potential human health hazards of nanoparticles? Inhal Toxicol. 2010;22:679-94. DOI: 10.3109/0895837100375882310.3109/0895837100375882320462394
  8. 8. Hubbs AF, Mercer RR, Benkovic SA, Harkema J, Sriram K, Schwegler-Berry D, et al. Nanotoxicology - a pathologist’s perspective. Toxicol Pathol. 2011;39:301-24. DOI: 10.1177/019262331039070510.1177/019262331039070521422259
  9. 9. Hui-Yi Liao, Yu-Teh Chung, Ching-Huang Lai, Shu-Li Wang, Hung-Che Chiang et al. Six-month follow-up study of health markers of nanomaterials among. Nanotoxicology. 2013;8:100-10. DOI: 10.3109/17435390.2013.85879310.3109/17435390.2013.85879324295335
  10. 10. Liou S-H, Tsai CSJ, Pelclova D, Schubauer-Berigan MK, Schulte PA. Assessing the first wave of epidemiological studies of nanomaterial workers. J Nanopart Res Journal. 2015;17(10):413. DOI: 10.1007/s11051-015-3219-710.1007/s11051-015-3219-7466654226635494
  11. 11. Vogel CFA, Sciullo E, Wong P, Kuzmicky P, Kado N, Matsumura F. Induction of proinflammatory cytokines and C-reactive protein in human macrophage cell line U937 exposed to air pollution particulates. Environ Health Perspect. 2005;113:1536-41. DOI: 10.1289/ehp.809410.1289/ehp.8094131091516263508
  12. 12. Li Y, Rittenhouse-Olson K, L.Scheider W, Mu L. Effect of particulate matter air pollution on C-reactive protein: a review of epidemiologic studies, Rev Environ Health. 2012;27(2-3):133-49. DOI: 10.1515/reveh-2012-001210.1515/reveh-2012-0012355917923023922
  13. 13. Delfino RJ, Staimer N, Tjoa T, Polidori A, Arhami M, Gillen DL, et al. Circulating biomarkers of inflammation, antioxidant activity, and platelet activation are associated with primary combustion aerosols in subjects with coronary artery disease. Environ. Health Perspect. 2008;116:898-906. DOI: 10.1289/ehp.1118910.1289/ehp.11189245315818629312
  14. 14. Ohlson CG, Berg P, Bryngelsson IL, Elihn K, Ngo Y, Westberg H, et al. Inflammatory markers and exposure to occupational air pollutants. Inhal. Toxicol. 2010;22:1083-1090. DOI: 10.3109/08958378.2010.52035610.3109/08958378.2010.52035621029032
  15. 15. Niwa Y, Hiura Y, Sawamura H, Iwai N, Inhalation exposure to carbon black induces inflammatory response in rats. Circ. J. 2008;72:144-9. DOI: 10.1253/circj.72.14410.1253/circj.72.14418159116
  16. 16. Peters A, Greven S, Heid I. M, Baldari F, Breitner S, Bellander T. et al. Fibrinogen genes modify the fibrinogen response to ambient particulate matter. Am J Respir Crit Care Med. 2009;179:484-91. DOI: 10.1164/rccm.200805-751OC10.1164/rccm.200805-751OC19136375
  17. 17. Marra J, Voetz M, Kiesling HJ. Monitor for detecting and assessing exposure to airborne nanoparticles. J Nanopart Res. 2010;12:21-37. DOI: 10.1007/s11051-009-9695-x10.1007/s11051-009-9695-x
  18. 18. Creta M, Poels K, Thoelen L, A Method to Quantitatively Assess Dermal Exposure to Volatile Organic Compounds, Annals of Work Exposures and Health. 2017;61(8):975-85. DOI: 10.1093/annweh/wxx05410.1093/annweh/wxx05429028249
  19. 19. Clauss A. Gerinnungsphysiologische Schnellmethode zur Bestimmung des Fibrinogens. Acta Haematol. 1957;17:237-46. DOI: 10.1159/00020523410.1159/00020523413434757
  20. 20. Donaldson K, Stone V, Seaton A, MacNee W. Ambient particle inhalation and the cardiovascular system: potential mechanisms. Environ Health Perspect. 2001;109(Suppl 4):523-27. DOI: 10.1289/ehp.01109s452310.1289/ehp.01109s4523124057511544157
  21. 21. Borm PJ, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, et al. The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol. 2006;3:11-45. DOI: 10.1186/1743-8977-3-1110.1186/1743-8977-3-11158424816907977
  22. 22. Brouwer D. Exposure to manufactured nanoparticles in different workplaces. Toxicology. 2010;269:120-7. DOI: 10.1016/j.tox.2009.11.01710.1016/j.tox.2009.11.017
  23. 23. Frampton MW. Does inhalation of ultrafine particles cause pulmonary vascular effects in humans? Inhal Toxicol. 2007;19:75-9. DOI: 10.1080/0895837070149507110.1080/08958370701495071
  24. 24. Quan C, Sun Q, Lippmann M, Chen LC. Comparative effects of inhaled diesel exhaust and ambient fine particles on inflammation, atherosclerosis, and vascular dysfunction. Inhal Toxicol. 2010;22:738-53. DOI: 10.3109/0895837100372805710.3109/08958371003728057
  25. 25. Peters A, Breitner S, Cyrys J, Stolzel M, Pitz M, Wolke G, et al. The influence of improved air quality on mortality risks in Erfurt, Germany. Res Rep Health Eff Inst. 2009;137:5-77.
  26. 26. Song Y, Li X, Du X. Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. Eur Respir J. 2009;34:559-67. DOI: 10.1183/09031936.0017830810.1183/09031936.00178308
  27. 27. Pepys MB, Hirschfield GM. C-reactive protein: A critical update. J Clin Investig. 2003;111:1805-12. DOI: 10.1172/JCI20031892110.1172/JCI200318921
  28. 28. Simion M, Ruta Lavinia L, Kleps I, Miu M. Study of HS-CRP immobilization on nanostructured silicon. Materials Science and Engineering B, Solid-State Materials for Advanced Technology. 2010;169(1-3):67-72. DOI: 10.1016/j.mseb.2009.12.05010.1016/j.mseb.2009.12.050
  29. 29. Zhang YX, Cliff WJ, Schoefl GI, Higgins G. Coronary C-reactive protein distribution: Its relation to development of atherosclerosis. Atherosclerosis. 1999;145:375-9. DOI: 10.1016/S0021-9150(99)00105-710.1016/S0021-9150(99)00105-7
  30. 30. McBride JD., Cooper MA. A high sensitivity assay for the inflammatory marker C-Reactive protein employing acoustic biosensing. Nanobiotechnology. 2008;6:1-8. DOI: 10.1186/1477-3155-6-510.1186/1477-3155-6-5240860918445267
  31. 31. Ansar W, Ghosh S. C-reactive protein and the biology of disease. Immunol Res. 2013;56(1):131-42. DOI: 10.1007/s12026-013-8384-010.1007/s12026-013-8384-023371836
  32. 32. Pilar C, Rosana S.V, Jonathan P, González F. A quantitative binding study of fibrinogen and human serum albumin to metal oxide nanoparticles by surface plasmon resonance, Biosens Bioelectron. 2015;74:376-83. DOI: 10.1016/j.bios.2015.05.07010.1016/j.bios.2015.05.07026162328
  33. 33. Fischbach F. Blood Studies. Hematology and Coagulation, A Manual of Laboratory and Diagnostic Test 8th ed, Philadelphia, 2009;177-8.
  34. 34. Bergamaschi E. Human Biomonitoring of Engineered Nanoparticles: An Appraisal of Critical Issues and Potential Biomarkers. J Nanomater. 2012;2012:1-12. DOI: 10.1155/2012/56412110.1155/2012/564121
  35. 35. Liou SH, Tsou TC, Wang SL, Li LA, Chiang HC, Li WF, et al. Epidemiological study of health hazards among workers handling engineered nanomaterials. J Nanopart Res Journal. 2012;14:878-82. DOI: 10.1007/s11051-012-0878-510.1007/s11051-012-0878-5
  36. 36. Mills NL, Tornqvist H, Robinson SD, Gonzalez M, Darnley K, MacNeeW, et al. Diesel exhaust inhalation causes vascular dysfunction and impaired endogenous fibrinolysis. Circulation. 2005;112:3930-6. DOI: 10.1161/CIRCULATIONAHA.105.58896210.1161/CIRCULATIONAHA.105.58896216365212
  37. 37. Lucking AJ, Lundback M, Mills NL, Faratian D, Barath SL, Pourazar J, et al. Diesel exhaust inhalation increases thrombus formation in man. Eur Heart J. 2008;29:3043-51. DOI: 10.1093/eurheartj/ehn46410.1093/eurheartj/ehn46418952612
  38. 38. Araujo JA, Nel AE. Particulate matter and atherosclerosis: role of particle size, composition and oxidative stress. Part Fibre Toxicol. 2009;6:24-42. DOI: 10.1186/1743-8977-6-2410.1186/1743-8977-6-24276185019761620
  39. 39. Paik SY, Zalk DM, Swuste P. Application of a pilot control banding tool for risk level assessment and control of nanoparticle exposures. Ann Occup Hyg. 2008;52:419-28.
  40. 40. Sutton RH, Hobman B. The value of plasma fibrinogen estimations in cattle: A comparison with total leucocyte and neutrophil counts. N. Z. Vet J. 1975;23(3):21-27 DOI: 10.1080/00480169.1975.3418610.1080/00480169.1975.341861058358
  41. 41. Pelclova D, Fenclova Z, Syslova K, Vlckova S, Lebedova J, Pecha O. Oxidative stress markers in exhaled breath condensate in lung fibroses are not significantly affected by systemic diseases. Ind Health. 2011;49(6):746-54. DOI: 10.2486/indhealth.MS123710.2486/indhealth.MS123722020018
  42. 42. Pelclova D, Navratil T, Fenclova Z, Vlckova S, Kupka K, Urban P, et al. Increased oxidative/nitrosative stress markers measured non- invasively in patients with high 2,3,7,8-tetrachloro-dibenzo-p-dioxin plasma level. Neuro Endocrinol Lett. 2011;32Suppl 1:71-6.
  43. 43. Pelclova D, Zdimal V, Kacer P, Fenclova Z, Vlckova S, Syslova K. et al. Oxidative stress markers are elevated in exhaled breath condensate of workers exposed to nanoparticles during iron oxide pigment production. J Breath Res. 2016;10(1):016004. DOI: 10.1088/1752-7155/10/1/01600410.1088/1752-7155/10/1/01600426828137
  44. 44. Fogarasi E, Croitoru MD, Fülöp I, Nemes-Nagy E, Tripon RG, Simon-Szabo Z, et al. Malondialdehyde levels can be measured in biological samples by using a fast HPLC method with visible detection. Rev Romana Med Lab. 2016;24(3):319-26. DOI: 10.1515/rrlm- 2016-002910.1515/rrlm-2016-0029
DOI: https://doi.org/10.2478/rrlm-2018-0011 | Journal eISSN: 2284-5623 | Journal ISSN: 1841-6624
Language: English
Page range: 177 - 187
Submitted on: Nov 21, 2017
|
Accepted on: Mar 4, 2018
|
Published on: May 17, 2018
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Septimiu Voidazan, Horatiu Moldovan, Adina Huţanu, Doina Giurgiu, Stelian Morariu, Lode Godderis, Radu-Corneliu Duca, published by Romanian Association of Laboratory Medicine
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.