Have a personal or library account? Click to login
Antibiotic susceptibility and resistance profiles of Romanian Clostridioides difficile isolates Cover

Antibiotic susceptibility and resistance profiles of Romanian Clostridioides difficile isolates

Open Access
|May 2018

References

  1. 1. Bartlett JG, Gerding DN. Clinical recognition and diagnosis of Clostridium difficile infection. Clin Infect Dis. 2008 Jan;46(Suppl 1):S12-S18. DOI: 10.1086/52186310.1086/52186318177217
  2. 2. Bloomfield LE, Riley TV. Epidemiology and risk factors for community-associated Clostridium difficile infection: a narrative review. Infect Dis Ther. 2016 Sep;5(3):231-51. DOI: 10.1007/s40121-016-0117-y10.1007/s40121-016-0117-y501997327370914
  3. 3. Rupnik M. Is Clostridium difficile-associated infection a potentially zoonotic and foodborne disease? Clin Microbiol Infect. 2007 May;13(5):457-9. DOI: 10.1111/j.1469-0691.2007.01687.x10.1111/j.1469-0691.2007.01687.x17331126
  4. 4. Hall IC, O’Toole E. Intestinal flora in new-born infants with a description of a new pathogenic anaerobe, Bacillus difficilis. Am J Dis Child. 1935;49(2):390-402. DOI: 10.1001/archpedi.1935.0197002010501010.1001/archpedi.1935.01970020105010
  5. 5. Voth DE, Ballard JD. Clostridium difficile toxins: mechanism of action and role in disease. Clin Microbiol Rev. 2005 Apr;18(2):247-263. DOI: 10.1128/ CMR.18.2.247-263.200510.1128/CMR.18.2.247-263.2005108279915831824
  6. 6. Wilcox MH, Chalmers JD, Nord CE, Freeman J, Bouza E. Role of cephalosporins in the era of Clostridium difficile infection. J Antimicrob Chemother. 2017 Jan;72(1):1-18. DOI: 10.1093/jac/dkw38510.1093/jac/dkw385516104827659735
  7. 7. Bartlett JG, Onderdonk AB, Cisneros RL, Kasper DL. Clindamycin-associated colitis due to a toxin-producing species of Clostridium in hamsters. J Infect Dis. 1977 Nov;136(5):701-5. DOI: 10.1093/infdis/136.5.70110.1093/infdis/136.5.701915343
  8. 8. Owens Jr RC, Donskey CJ, Gaynes RP, Loo VG, Muto CA. Antimicrobial-associated risk factors for Clostridium difficile infection. Clin Infect Dis. 2008 Jan;46(- Suppl 1):S19-S31. DOI: 10.1086/52185910.1086/52185918177218
  9. 9. Baines SD, Wilcox MH. Antimicrobial resistance and reduced susceptibility in Clostridium difficile: potential consequences for induction, treatment, and recurrence of C. difficile infection. Antibiotics (Basel). 2015 Sep;4(3):267-8. DOI: 10.3390/antibiotics403026710.3390/antibiotics4030267479028527025625
  10. 10. Spigaglia P. Recent advances in the understanding of antibiotic resistance in Clostridium difficile infection. Ther Adv Infect Dis. 2016 Feb;3(1):23-42. DOI: 10.1177/204993611562289110.1177/2049936115622891473550226862400
  11. 11. McFarland LV, Ozen M, Dinleyici EC, Goh S. Comparison of pediatric and adult antibiotic-associated diarrhea and Clostridium difficile infections. World J Gastroenterol. 2016 Mar;22(11):3078-104. DOI: 10.3748/wjg.v22.i11.307810.3748/wjg.v22.i11.3078478998527003987
  12. 12. Freeman J, Vernon J, Vickers R, Wilcox MH. Susceptibility of Clostridium difficile isolates of varying antimicrobial resistance phenotypes to SMT19969 and 11 comparators. Antimicrob Agents Chemother. 2016 Jan;60(1):689-692. DOI: 10.1128/AAC.02000-1510.1128/AAC.02000-15470418726552981
  13. 13. Spigaglia P, Barbanti F, Mastrantonio P, on behalf of the European Study Group on Clostridium difficile (ESGCD). Multidrug resistance in European Clostridium difficile clinical isolates. J Antimicrob Chemother. 2011 Oct;66(10):2227-34. DOI: 10.1093/jac/dkr29210.1093/jac/dkr29221771851
  14. 14. Vardakas KZ, Konstantelias AA, Loizidis G, Rafailidis PI, Falagas ME. Risk factors for development of Clostridium difficile infection due to BI/ NAP1/027 strain: a meta-analysis. Int J Infect Dis. 2012 Nov;16(11):e768-e773/. DOI: 10.1016/j.ijid.2012.07.01010.1016/j.ijid.2012.07.01022921930
  15. 15. Freeman J, Vernon J, Morris K, Nicholson S, Todhunter S, Longshaw C, et al. Pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes. Clin Microbiol Infect. 2015 Mar; 21(3):248.e9-248.e16. DOI: 10.1016/j.cmi.2014.09.01710.1016/j.cmi.2014.09.01725701178
  16. 16. Farrow KA, Lyras D, Rood JI. Genomic analysis of the erythromycin resistance element Tn5398 from Clostridium difficile. Microbiology. 2001 Oct;147(10):2717-28. DOI: 10.1099/00221287-147-10-271710.1099/00221287-147-10-271711577151
  17. 17. Spigaglia P, Mastrantonio P. Comparative analysis of Clostridium difficile clinical isolates belonging to different genetic lineages and time periods. J Med Microbiol. 2004 Nov;53(11):1129-36. DOI: 10.1099/jmm.0.45682-010.1099/jmm.0.45682-015496392
  18. 18. Dönhöfer A, Franckenberga S, Wicklesa S, Berninghausena O, Beckmann R, Wilson DN. Structural basis for TetM-mediated tetracycline resistance. Proc Natl Acad Sci U S A. 2012 Oct;109(42):16900-5. DOI: 10.1073/pnas.120803710910.1073/pnas.1208037109347950923027944
  19. 19. Mullany P, Wilks M, Lamb I, Clayton C, Wren B, Tabaqchali S. Genetic analysis of a tetracycline resistance element from Clostridium difficile and its conjugal transfer to and from Bacillus subtilis. J Gen Microbiol. 1990 Jul;136(7):1343-9. DOI: 10.1099/00221287-136-7-134310.1099/00221287-136-7-13432172445
  20. 20. Wang H, Mullany P. The large resolvase TndX is required and sufficient for integration and excision of derivatives of the novel conjugative transposon Tn5397. J Bacteriol. 2000 Dec;182(23):6577-83. DOI: 10.1128/JB.182.23.6577-6583.200010.1128/JB.182.23.6577-6583.200011139611073898
  21. 21. Spigaglia P, Carucci V, Barbanti F, Mastrantonio P. ErmB determinants and Tn916-like elements in clinical isolates of Clostridium difficile. Antimicrob Agents Chemother. 2005 Jun;49(6):2550-3. DOI: 10.1128/AAC.49.6.2550-2553.200510.1128/AAC.49.6.2550-2553.2005114053315917571
  22. 22. Fry PR, Thakur S, Abley M, Gebreyesa WA. Antimicrobial resistance, toxinotype, and genotypic profiling of Clostridium difficile isolates of swine origin. J Clin Microbiol. 2012 Jul;50(7):2366-72. DOI: 10.1128/JCM.06581-1110.1128/JCM.06581-11340560622518873
  23. 23. Spigaglia P, Barbanti F, Mastrantonio P. Tetracycline resistance gene tet(W) in the pathogenic bacterium Clostridium difficile. Antimicrob Agents Chemother.2008 Feb;52(2):770-3. DOI: 10.1128/AAC.00957-0710.1128/AAC.00957-07222477818070963
  24. 24. Kuijper EJ, Coignard B, Tüll P, on behalf of the ESCMID Study Group for Clostridium difficile (ESGCD), EU Member States and the European Centre for Disease Prevention and Control (ECDC). Emergence of Clostridium difficile-associated disease in North Americaand Europe. Clin Microbiol Infect. 2006 Oct;12(Suppl. 6):2-18. DOI: 10.1111/j.1469-0691.2006.01580.x10.1111/j.1469-0691.2006.01580.x16965399
  25. 25. Popescu GA, Șerban R, Pistol A, Niculcea A, Preda A, Lemeni D, et al. Clinical and microbiological characterization of Clostridium difficile infection in Romania (2013-2014); a hospital based study. BMC Infect Dis. 2014a;14(Suppl 7):o24. DOI: 10.1186/1471-2334-14-S7-O2410.1186/1471-2334-14-S7-O24
  26. 26. Popescu GA, Florea D, Rafila A. Clostridium difficile is emerging in Romania: a story of 027 ribotype and excessive antibiotic consumption. J Gastrointestin Liver Dis. 2014b;23(3):342-3.
  27. 27. Florea D, Huhulescu S, Indra A, Badicut I, Rafila A, Otelea D, et al. PCR coupled with mass-spectrometry for detection of Clostridium difficile virulence markers during the emergence of ribotype 027 in Bucharest area. Rev Romana Med Lab. 2015;23(4):449-55. DOI:10.1515/rrlm-2015-004410.1515/rrlm-2015-0044
  28. 28. Macovei IS, Lemeni D, Usein CR, Șerban R, Niculcea A, Popescu GA, et al. The use of PCR Ribotyping for molecular typing of clinically significant Clostridium difficile Romanian isolates. Rom Biotechnol Lett.2017;22(5).
  29. 29. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters, version 7.1. 2017; http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_7.1_Breakpoint.
  30. 30. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. CLSI document M100-27th ed. 2017:96-100.
  31. 31. Marin M, Martín A, Alcalá LM, Cercenado E, Iglesias C, Reigadas E, et al. Clostridium difficile isolates with high linezolid MICs harbor the multiresistance gene cfr. Antimicrob Agents Chemother. 2015 Jan;59(1):586-9. DOI: 10.1128/AAC.04082-1410.1128/AAC.04082-14429143925385106
  32. 32. Marchese A, Ramirez M, Schito GC, Tomasz A. Molecular epidemiology of penicillin-resistant Streptococcus pneumoniae isolates recovered in Italy from 1993 to 1996. J Clin Microbiol. 1998 Oct;36(10):2944-9.10.1128/JCM.36.10.2944-2949.19981050929738048
  33. 33. Baines SD, O’Connor R, Freeman J, Fawley WN, Harmanus C, Mastrantonio P, et al. Emergence of reduced susceptibility to metronidazole in Clostridium difficile. J Antimicrob Chemother. 2008 Nov;62(5):1046-52. DOI: 10.1093/jac/dkn31310.1093/jac/dkn31318693234
  34. 34. Marsh JW, Arora R, Schlackman JL, Shutt KA, Curry SR, Harrison LH. Association of relapse of Clostridium difficile disease with BI/NAP1/027. J Clin Microbiol. 2012 Dec;50(12):4078-82. DOI: 10.1128/JCM.02291-1210.1128/JCM.02291-12350298823052318
  35. 35. Cherian PT, Wu X, Yang L, Scarborough JS, Singh AP, Alam ZA, et al. Gastrointestinal localization of metronidazole by a lactobacilli-inspired tetramic acid motif improves treatment outcomes in the hamster model of Clostridium difficile infection. J Antimicrob Chemother. 2015 Nov;70(11):3061-9. DOI: 10.1093/jac/dkv23110.1093/jac/dkv231467726126286574
  36. 36. Robinson CD, Auchtung JM, Collins J, Britton RA. Epidemic Clostridium difficile strains demonstrate increased competitive fitness compared to nonepidemic isolates. Infect Immun. 2014 Jul;82(7):2815-25. DOI: 10.1128/IAI.01524-1410.1128/IAI.01524-14409762324733099
  37. 37. Lachowicz D, Pituch H, Obuch-Woszczatyński P. Antimicrobial susceptibility patterns of Clostridium difficile strains belonging to different polymerase chain reaction ribotypes isolated in Poland in 2012. Anaerobe. 2015 Feb;31:37-41. DOI: 10.1016/j.anaerobe.2014.09.00410.1016/j.anaerobe.2014.09.00425242196
  38. 38. Spigaglia P, Barbanti F, Mastrantonio P. Detection of a genetic linkage between genes coding for resistance to tetracycline and erythromycin in Clostridium difficile. Microb Drug Resist. 2007;13(2):90-5. DOI: 10.1089/mdr.2007.72310.1089/mdr.2007.72317650959
  39. 39. Knight DR, Elliott B, Chang BJ, Perkins TT, Riley TV. Diversity and evolution in the genome of Clostridium difficile. Clin Microbiol Rev. 2015 Jul;28(3):721-41. DOI: 10.1128/CMR.00127-1410.1128/CMR.00127-14447564526085550
  40. 40. Büchler AC, Rampini SK, Stelling S, Ledergerber B, Peter S, Schweiger A, et al. Antibiotic susceptibility of Clostridium difficile is similar worldwide over two decades despite widespread use of broad-spectrum antibiotics: an analysis done at the University Hospital of Zurich. BMC Infect Dis. 2014 Nov;14:607. DOI: 10.1186/s12879-014-0607-z10.1186/s12879-014-0607-z424776025425433
  41. 41. Curry SR, Marsh JW, Shutt KA, Muto CA, O’Leary MM, Saul MI, et al. High frequency of rifampin resistance identified in an epidemic Clostridium difficile clone from a large teaching hospital. Clin Infect Dis. 2009 Feb;48(4):425-9. DOI: 10.1086/59631510.1086/596315281916919140738
DOI: https://doi.org/10.2478/rrlm-2018-0007 | Journal eISSN: 2284-5623 | Journal ISSN: 1841-6624
Language: English
Page range: 189 - 200
Submitted on: Aug 21, 2017
Accepted on: Jan 10, 2018
Published on: May 17, 2018
Published by: Romanian Association of Laboratory Medicine
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Ioana Macovei, Daniela Lemeni, Roxana Șerban, Andreea Niculcea, Gabriel A. Popescu, Maria Nica, Anca Petrini, Grigore Mihăescu, published by Romanian Association of Laboratory Medicine
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.