References
- 1. Grigore GE, Dascalescu A, Zlei M, Ivanov IC, Danaila C, Petreus T, et al. Rai stage-related changes within T/ NK cell populations from B-CLL patients. Rev Romana Med Lab. 2013;21(3):321-31. DOI: 10.2478/rrlm-2013-003210.2478/rrlm-2013-0032
- 2. D’Arena G, Guariglia R, La Rocca F, Trino S, Condelli V, De Martino L, et al. Autoimmune Cytopenias in Chronic Lymphocytic Leukemia. Clin Dev Immunol. 2013:730131. DOI: 10.1155/2013/73013110.1155/2013/730131365213123690826
- 3. Hallek M. State-of-the-art treatment of chronic lymphocytic leukemia. ASH Education Program Book. 2009;2009(1):440-9.10.1182/asheducation-2009.1.44020008230
- 4. Perez-Andres M, Paiva B, Nieto WG, Caraux A, Schmitz A, Almeida J et al. Human peripheral blood B-cell compartments: A crossroad in B-cell traffic. Cytometry Part B: Clinical Cytometry. 2010;78(S1):S47-S60. DOI: 10.1002/cyto.b.2054710.1002/cyto.b.2054720839338
- 5. Zenz T, Mertens D, Küppers R, Döhner H, Stilgenbauer S. From pathogenesis to treatment of chronic lymphocytic leukaemia. Nat Rev Cancer. 2010 Jan;10(1):37-50. DOI: 10.1038/nrc276410.1038/nrc276419956173
- 6. Davids MS, Burger JA. Cell trafficking in chronic lymphocytic leukemia. Open J Hematol. 2012;3(S1).10.13055/ojhmt_3_S1_03.120221340459922844583
- 7. Caligaris-Cappio F. Role of the microenvironment in chronic lymphocytic leukaemia. British journal of haematology. 2003;123(3):380-8. DOI: 10.1046/j.1365-2141.2003.04679.x10.1046/j.1365-2141.2003.04679.x14616995
- 8. Ghia P, Strola G, Granziero L, Geuna M, Guida G, Sallusto F, et al. Chronic lymphocytic leukemia B cells are endowed with the capacity to attract CD4+, CD40L+ T cells by producing CCL22. European Journal of Immunology. 2002;32(5):1403-13. DOI: 10.1002/1521-4141(200205)32:5<1403::AID-IMMU1403> 3.0.CO;2-Y
- 9. Fabris S, Scarciolla O, Morabito F, Cifarelli RA, Dininno C, Cutrona G, et al. Multiplex ligation-dependent probe amplification and fluorescence in situ hybridization to detect chromosomal abnormalities in Chronic lymphocytic leukemia: A comparative study. Genes, Chromosomes and Cancer. 2011;50(9):726-34. DOI: 10.1002/gcc.2089410.1002/gcc.2089421638517
- 10. Deutsch AJA, Steinbauer E, Hofmann NA, Strunk D, Gerlza T, Beham-Schmid C, et al. Chemokine receptors in gastric MALT lymphoma: loss of CXCR4 and upregulation of CXCR7 is associated with progression to diffuse large B-cell lymphoma. Mod Pathol. 2013 Feb;26(2):182-94.10.1038/modpathol.2012.13422936065
- 11. Han T, Abdel-Motal UM, Chang D-K, Sui J, Muvaffak A, Campbell J, et al. Human anti-CCR4 minibody gene transfer for the treatment of cutaneous t-cell lymphoma. PloS one. 2012;7(9):e44455. DOI: 10.1371/journal. pone.0044455
- 12. Chang D-K, Sui J, Geng S, Muvaffak A, Bai M, Fuhlbrigge RC, et al. Humanization of an anti-CCR4 antibody that kills cutaneous T-cell lymphoma cells and abrogates suppression by T-regulatory cells. Molecular Cancer Therapeutics. 2012;11(11):2451-61. DOI: 10.1158/1535-7163.MCT-12-027810.1158/1535-7163.MCT-12-0278349603422869555
- 13. Ishida T, Ishii T, Inagaki A, Yano H, Kusumoto S, Ri M, et al. The CCR4 as a novel-specific molecular target for immunotherapy in Hodgkin lymphoma. Leukemia. 2006;20(12):2162-8. DOI: 10.1038/sj.leu.240441510.1038/sj.leu.240441517039235
- 14. Al-haidari Amr A., Syk I, Jirström K, Thorlacius H. CCR4 mediates CCL17 (TARC)-induced migration of human colon cancer cells via RhoA/Rho-kinase signaling. Int J Colorectal Dis. 2013 Nov 1;28(11):1479-87. DOI: 10.1007/s00384-013-1712-y10.1007/s00384-013-1712-y23649168
- 15. Li J-Y, Ou Z-L, Yu S-J, Gu X-L, Yang C, Chen A-X et al. The chemokine receptor CCR4 promotes tumor growth and lung metastasis in breast cancer. Breast cancer research and treatment. 2012;131(3):837-48. DOI: 10.1007/s10549-011-1502-610.1007/s10549-011-1502-621479551
- 16. Tsujikawa T, Yaguchi T, Ohmura G, Ohta S, Kobayashi A, Kawamura N, et al. Autocrine and paracrine loops between cancer cells and macrophages promote lymph node metastasis via CCR4/CCL22 in head and neck squamous cell carcinoma. Int J Cancer. 2013 Jun 15;132(12):2755-66. DOI: 10.1002/ijc.2796610.1002/ijc.2796623180648
- 17. Mahadevan D, Choi J, Cooke L, Simons B, Riley C, Klinkhammer T, et al. Gene Expression and Serum Cytokine Profiling of Low Stage CLL Identify WNT/ PCP, Flt-3L/Flt-3 and CXCL9/CXCR3 as Regulators of Cell Proliferation, Survival and Migration. Hum Genomics Proteomics. 2009;2009:453634. DOI: 10.4061/2009/45363410.4061/2009/453634295862520981323
- 18. Singh AK, Arya RK, Trivedi AK, Sanyal S, Baral R, Dormond O, et al. Chemokine receptor trio: CXCR3, CXCR4 and CXCR7 crosstalk via CXCL11 and CXCL12. Cytokine Growth Factor Rev. 2013 Feb;24(1):41-9. DOI: 10.1016/j.cytogfr.2012.08.00710.1016/j.cytogfr.2012.08.007417245422989616
- 19. Mulligan AM, Raitman I, Feeley L, Pinnaduwage D, Nguyen LT, O’Malley FP, et al. Tumoral Lymphocytic Infiltration and Expression of the Chemokine CXCL10 in Breast Cancers from the Ontario Familial Breast Cancer Registry. Clinical Cancer Research. 2013;19(2):336-46. DOI: 10.1158/1078-0432.CCR-11-331410.1158/1078-0432.CCR-11-3314354893823213058
- 20. Bürkle A, Niedermeier M, Schmitt-Gräff A, Wierda WG, Keating MJ, Burger JA. Overexpression of the CXCR5 chemokine receptor, and its ligand, CXCL13 in B-cell chronic lymphocytic leukemia. Blood. 2007;110(9):3316-25. DOI: 10.1182/ blood-2007-05-08940910.1182/blood-2007-05-08940917652619
- 21. Okada T, Ngo VN, Ekland EH, Förster R, Lipp M, Littman DR, et al. Chemokine requirements for B cell entry to lymph nodes and Peyer’s patches. The Journal of experimental medicine. 2002;196(1):65-75. DOI: 10.1084/jem.2002020110.1084/jem.20020201219400912093871
- 22. Malavasi F, Deaglio S, Damle R, Cutrona G, Ferrarini M, Chiorazzi N. CD38 and chronic lymphocytic leukemia: a decade later. Blood. 2011;118(13):3470-8. DOI: 10.1182/blood-2011-06-27561010.1182/blood-2011-06-275610357427521765022
- 23. Nagira M, Imai T, Yoshida R, Takagi S, Iwasaki M, Baba M, et al. A lymphocyte-specific CC chemokine, secondary lymphoid tissue chemokine (SLC), is a highly efficient chemoattractant for B cells and activated T cells. European Journal of Immunology. 1998;28(5):1516-23. DOI: 10.1002/ (SICI)1521-4141(199805)28:05<1516::AID-IMMU1516> 3.0.CO;2-J10.1002/(SICI)1521-4141(199805)28:05<1516::AID-IMMU1516>3.0.CO;2-J
- 24. Kunkel EJ, Butcher EC. Plasma-cell homing. Nature Reviews Immunology. 2003;3(10):822-9. DOI: 10.1038/nri120310.1038/nri1203
- 25. Nannini PR, Borge M, Mikolaitis VC, Abreu C, Morande PE, Zanetti SR, et al. CCR4 expression in a case of cutaneous Richter’s transformation of chronic lymphocytic leukemia (CLL) to diffuse large B-cell lymphoma (DLBCL) and in CLL patients with no skin manifestations. European Journal of Haematology. 2011;87(1):80-6. DOI: 10.1111/j.1600-0609.2011.01613.x10.1111/j.1600-0609.2011.01613.x
- 26. Kim CH, Rott L, Kunkel EJ, Genovese MC, Andrew DP, Wu L, et al. Rules of chemokine receptor association with T cell polarization in vivo. Journal of Clinical Investigation. 2001;108(9):1331-9. DOI: 10.1172/ JCI20011354310.1172/JCI13543
- 27. Cózar JM, Canton J, Tallada M, Concha A, Cabrera T, Garrido F, et al. Analysis of NK cells and chemokine receptors in tumor infiltrating CD4 T lymphocytes in human renal carcinomas. Cancer Immunology, Immunotherapy. 2005;54(9):858-66. DOI: 10.1007/s00262-004-0646-110.1007/s00262-004-0646-1
- 28. Svensson H, Olofsson V, Lundin S, Yakkala C, Björck S, Börjesson L, et al. Accumulation of CCR4+ CTLA-4hi FOXP3+ CD25hi regulatory T cells in colon adenocarcinomas correlate to reduced activation of conventional T cells. PloS one. 2012;7(2):e30695. DOI: 10.1371/journal.pone.003069510.1371/journal.pone.0030695
- 29. Monserrat J, Ángel Sánchez M, de Paz R, Díaz D, Mur S, Reyes E, et al. Distinctive patterns of naïve/memory subset distribution and cytokine expression in CD4 T lymphocytes in ZAP-70 B-chronic lymphocytic patients. Cytometry Part B: Clinical Cytometry. 2013. DOI: 10.1002/cytob.2112010.1002/cytob.21120
- 30. Ocana E, Delgado-Perez L, Campos-Caro A, Munoz J, Paz A, Franco R, et al. The prognostic role of CXCR3 expression by chronic lymphocytic leukemia B cells. Haematologica. 2007;92(3):349-56. DOI: 10.3324/haematol. 10649
- 31. Jones D, Benjamin RJ, Shahsafaei A, Dorfman DM. The chemokine receptor CXCR3 is expressed in a subset of B-cell lymphomas and is a marker of B-cell chronic lymphocytic leukemia. Blood. 2000;95(2):627-32.10.1182/blood.V95.2.627
- 32. Giuliani N, Bonomini S, Romagnani P, Lazzaretti M, Morandi F, Colla S, et al. CXCR3 and its binding chemokines in myeloma cells: expression of isoforms and potential relationships with myeloma cell proliferation and survival. Haematologica. 2006;91(11):1489-97.
- 33. Trentin L, Agostini C, Facco M, Piazza F, Perin A, Siviero M, et al. The chemokine receptor CXCR3 is expressed on malignant B cells and mediates chemotaxis. Journal of Clinical Investigation. 1999;104(1):115-21. DOI: 10.1172/JCI733510.1172/JCI7335
- 34. Wong S, Fulcher D. Chemokine receptor expression in B-cell lymphoproliferative disorders. Leukemia & lymphoma. 2004;45(12):2491-6. DOI: 10.1080/1042819041000172344910.1080/10428190410001723449
- 35. Cambien B, Karimdjee B, Richard-Fiardo P, Bziouech H, Barthel R, Millet M, et al. Organ-specific inhibition of metastatic colon carcinoma by CXCR3 antagonism. British journal of cancer. 2009;100(11):1755-64. DOI: 10.1038/sj.bjc.660507810.1038/sj.bjc.6605078269568519436305
- 36. Pradelli E, Karimdjee-Soilihi B, Michiels JF, Ricci JE, Millet MA, Vandenbos F, et al. Antagonism of chemokine receptor CXCR3 inhibits osteosarcoma metastasis to lungs. International Journal of Cancer. 2009;125(11):2586-94. DOI: 10.1002/ijc.2466510.1002/ijc.24665277214519544560
- 37. López-Giral S, Quintana NE, Cabrerizo M, Alfonso- Pérez M, Sala-Valdés M, de Soria VGG, et al. Chemokine receptors that mediate B cell homing to secondary lymphoid tissues are highly expressed in B cell chronic lymphocytic leukemia and non-Hodgkin lymphomas with widespread nodular dissemination. Journal of leukocyte biology. 2004;76(2):462-71. DOI: 10.1189/jlb.120365210.1189/jlb.120365215155773
- 38. Reif K, Ekland EH, Ohl L, Nakano H, Lipp M, Förster R, et al. Balanced responsiveness to chemoattractants from adjacent zones determines B-cell position. Nature. 2002;416(6876):94-9. DOI: 10.1038/416094a10.1038/416094a11882900
- 39. Cha Z, Zang Y, Guo H, Rechlic JR, Olasnova LM, Gu H, et al. Association of peripheral CD4+ CXCR5+ T cells with chronic lymphocytic leukemia. Tumour Biol. 2013 Dec;34(6):3579-85. DOI: 10.1007/s13277-013-0937-210.1007/s13277-013-0937-223807677
- 40. Bystry RS, Aluvihare V, Welch KA, Kallikourdis M, Betz AG. B cells and professional APCs recruit regulatory T cells via CCL4. Nature immunology. 2001;2(12):1126-32. DOI: 10.1038/ni73510.1038/ni73511702067
- 41. Jadidi-Niaragh F, Yousefi M, Memarian A, Hojjat-Farsangi M, Khoshnoodi J, Razavi SM, et al. Increased Frequency of CD8+ and CD4+ Regulatory T Cells in Chronic Lymphocytic Leukemia: Association with Disease Progression. Cancer investigation. 2013;31(2):121-31. DOI: 10.3109/07357907.2012.75611010.3109/07357907.2012.75611023286587
- 42. Scrivener S, Goddard R, Kaminski E, Prentice A. Abnormal T-cell function in B-cell chronic lymphocytic leukaemia. Leukemia & lymphoma. 2003;44(3):383-9. DOI: 10.1080/104281902100002999310.1080/104281902100002999312688308
- 43. Damle RN, Temburni S, Calissano C, Yancopoulos S, Banapour T, Sison C, et al. CD38 expression labels an activated subset within chronic lymphocytic leukemia clones enriched in proliferating B cells. Blood. 2007;110(9):3352-9. DOI: 10.1182/ blood-2007-04-08383210.1182/blood-2007-04-083832220090817684154
- 44. Zucchetto A, Benedetti D, Tripodo C, Bomben R, Dal Bo M, Marconi D, et al. CD38/CD31, the CCL3 and CCL4 chemokines, and CD49d/vascular cell adhesion molecule-1 are interchained by sequential events sustaining chronic lymphocytic leukemia cell survival. Cancer research. 2009;69(9):4001-9. DOI: 10.1158/0008-5472.CAN-08-417310.1158/0008-5472.CAN-08-417319383907
- 45. Herishanu Y, Pérez-Galán P, Liu D, Biancotto A, Pittaluga S, Vire B, et al. The lymph node microenvironment promotes B-cell receptor signaling, NF-κB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood. 2011;117(2):563-74. DOI: 10.1182/ blood-2010-05-28498410.1182/blood-2010-05-284984303148020940416
- 46. Palamarchuk A, Efanov A, Nazaryan N, Santanam U, Alder H, Rassenti L, et al. 13q14 deletions in CLL involve cooperating tumor suppressors. Blood. 2010;115(19):3916-22. DOI: 10.1182/ blood-2009-10-24936710.1182/blood-2009-10-249367286956020071661
- 47. Ouillette P, Collins R, Shakhan S, Li J, Li C, Shedden K, et al. The prognostic significance of various 13q14 deletions in chronic lymphocytic leukemia. Clinical Cancer Research. 2011;17(21):6778-90. DOI: 10.1158/1078-0432.CCR-11-078510.1158/1078-0432.CCR-11-0785320700121890456
- 48. Del Giudice I, Rossi D, Chiaretti S, Marinelli M, Tavolaro S, Gabrielli S, et al. NOTCH1 mutations in+ 12 chronic lymphocytic leukemia (CLL) confer an unfavorable prognosis, induce a distinctive transcriptional profiling and refine the intermediate prognosis of+ 12 CLL. Haematologica. 2012;97(3):437-41. DOI: 10.3324/haematol.2011.060129 10.3324/haematol.2011.060129329160022207691