Have a personal or library account? Click to login
An Approach to Automated Programming of Industrial Robots Based on Graphic Data Cover
Open Access
|Dec 2021

References

  1. [1] AMERINI, I., ANAGNOSTOPOULOS, A., MAIANO, L., CELSI, L.R., 2021. Deep learning for multimedia forensics Foundations and Trends in Computer Graphics and Vision. ISSN 15722740, DOI <a href="https://doi.org/10.1561/0600000096.10.1561/9781680838558" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1561/0600000096.10.1561/9781680838558</a>
  2. [2] BHATT, P.M., MALHAN, R.K., RAJENDRAN, P., SHAH, B.C., THAKAR, S., YOON, Y.J., GUPTA, S.K, 2021. Image-Based Surface Defect Detection Using Deep Learning: A Review (2021) Journal of Computing and Information Science in Engineering, 21(4), art. No. 4049535. Cited 2 times. 1) https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101153445&doi=10.1115%2f1.4049535∂nerID=40&md5=a5213a78218aeb49275b303a6797f40b, DOI <a href="https://doi.org/10.1115/1.4049535." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1115/1.4049535.</a>
  3. [3] KHAN, M.A., MITTAL, M., GOYAL, L.M., ROY, S., 2021. A deep survey on supervised learning based human detection and activity classification methods. Multimedia Tools and Applications, 80(18), pp. 27867-27923. Cited 3 times. 1) https://www.scopus.com/inward/record.uri?eid=2-s2.0-85108802610&doi=10.1007%2fs11042-021-10811-5∂nerID=40&md5=cee3db6c37193a7a2a94d91aa4295bd1, DOI: <a href="https://doi.org/10.1007/s11042-021-10811-5.10.1007/s11042-021-10811-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s11042-021-10811-5.10.1007/s11042-021-10811-5</a>
  4. [4] GUAN, K.M., ANDERSON, T.I., CREUX, P., KOVSCEK, A.R., 2021. Reconstructing porous media using generative flow networks (2021) Computers and Geosciences, 156, art. No. 104905, . 1) https://www.scopus.com/inward/record.uri?eid=2-s2.0-85112298638&doi=10.1016%2fj.cageo.2021.104905∂nerID=40&md5=5897ecfe28548319f8242a9c8a1d5daf, DOI: <a href="https://doi.org/10.1016/j.cageo.2021.104905.10.1016/j.cageo.2021.104905" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.cageo.2021.104905.10.1016/j.cageo.2021.104905</a>
  5. [5] RAVEENDRAN, S., PATIL, M.D., BIRAJDAR, G.K., 2021. Underwater image enhancement: a comprehensive review, recent trends, challenges and applications. Artificial Intelligence Review, 54(7), pp. 5413-5467. 1) https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107324533&doi=10.1007%2fs10462-021-10025-z∂nerID=40&md5=979366750f1ddeedeac28caeea8583cf, DOI: <a href="https://doi.org/10.1007/s10462-021-10025-z.10.1007/s10462-021-10025-z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10462-021-10025-z.10.1007/s10462-021-10025-z</a>
  6. [6] HUANG, S.W., CHENG, H.M., LIN S.F., 2019. Improved Imaging Resolution of Electrical Impedance Tomography Using Artificial Neural Networks for Image Reconstruction. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1551-1554, DOI: <a href="https://doi.org/10.1109/EMBC.2019.8856781.10.1109/EMBC.2019.885678131946190" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/EMBC.2019.8856781.10.1109/EMBC.2019.885678131946190</a>
  7. [7] JAKIMOVSKI, G., DAVCEY, D., 2018. Lung cancer medical image recognition using Deep Neural Networks. In: 2018 Thirteenth International Conference on Digital Information Management (ICDIM), pp. 1-5, DOI: <a href="https://doi.org/10.1109/ICDIM.2018.8847136.10.1109/ICDIM.2018.8847136" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ICDIM.2018.8847136.10.1109/ICDIM.2018.8847136</a>
  8. [8] WU, T. et al., 2019. T-SCNN: A Two-Stage Convolutional Neural Network for Space Target Recognition. In: IGARSS 2019 – 2019. IEEE International Geoscience and Remote Sensing Symposium, pp. 1334-1337, DOI: <a href="https://doi.org/10.1109/IGARSS.2019.8900185.10.1109/IGARSS.2019.8900185" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/IGARSS.2019.8900185.10.1109/IGARSS.2019.8900185</a>
  9. [9] DOERING, A., WITTE, H., 1997. Combination of adaptive signal processing and neural classification using an extended backpropagation algorithm. In: Neural Networks for Signal Processing VII. Proceedings of the 1997. IEEE Signal Processing Society Workshop, pp. 296-305, DOI: <a href="https://doi.org/10.1109/NNSP.1997.622410.10.1109/NNSP.1997.622410" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/NNSP.1997.622410.10.1109/NNSP.1997.622410</a>
  10. [10] JINGJING, X., JIAOYU, L., 2013. Neural network PID controller auto-tuning design and application. In: 25th Chinese Control and Decision Conference (CCDC), pp. 1370-1375, DOI: <a href="https://doi.org/10.1109/CCDC.2013.6561139.10.1109/CCDC.2013.6561139" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/CCDC.2013.6561139.10.1109/CCDC.2013.6561139</a>
  11. [11] KIN, T., SANZEN, Y., KAMIDA, M., AOKI, K., ARAKI, N., WATANABE, Y., 2017. Artificial Neural Network for Unfolding Accelerator-based Neutron Spectrum by Means of Multiple-foil Activation Method. In: IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), pp. 1-2, DOI: <a href="https://doi.org/10.1109/NSSMIC.2017.8532892.10.1109/NSSMIC.2017.8532892" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/NSSMIC.2017.8532892.10.1109/NSSMIC.2017.8532892</a>
  12. [12] LIN, J., ZENG, X., ZUO, Y., JU, Y., LIU, X., 2019. A Deep Neural Network for Antimicrobial Peptide Recognition. In: IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 82-85, DOI: <a href="https://doi.org/10.1109/BIBM47256.2019.8983034.10.1109/BIBM47256.2019.8983034" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/BIBM47256.2019.8983034.10.1109/BIBM47256.2019.8983034</a>
  13. [13] DUMITRIU, T., DUMITRIU, R. P., MANTA, V., 2016. Application of Artificial Neural Networks for modelling drug release from a bicomponent hydrogel system. In: 2016 20th International Conference on System Theory, Control and Computing (ICSTCC), pp. 675-680, DOI: <a href="https://doi.org/10.1109/ICSTCC.2016.7790744.10.1109/ICSTCC.2016.7790744" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ICSTCC.2016.7790744.10.1109/ICSTCC.2016.7790744</a>
  14. [14] BEKDAS, G., NIGDELI, S.M., YÜCEL, M., 2020. Artificial Intelligence and Machine Learning Applications in Civil, Mechanical, and Industrial Engineering. IGI Global. Retrieved from https://app.knovel.com/hotlink/toc/id:kpAIMLACM8/artificial-intelligence/artificial-intelligence10.4018/978-1-7998-0301-0
  15. [15] http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.229.1285&rep=rep1&type=pdf OLSEN, S., GOOCH, B., 2016. Image Simplification and Vectorization [Online] [Accessed: 11-2017]. Available at https://http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.229.1285&rep=rep1&type=pdf
  16. [16] YUAN, L., XU, X. 2015. Adaptive Image Edge Detection Algorithm Based on Canny Operator. 2015. In: 4th International Conference on Advanced Information Technology and Sensor Application (AITS), pp. 28-31, DOI: <a href="https://doi.org/10.1109/AITS.2015.14.10.1109/AITS.2015.14" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/AITS.2015.14.10.1109/AITS.2015.14</a>
  17. [17] TASNEEM, T., AFROZE, Z., 2019. A New Method of Improving Performance of Canny Edge Detection. In: 2nd International Conference on Innovation in Engineering and Technology (ICIET), pp. 1-5, DOI: <a href="https://doi.org/10.1109/ICIET48527.2019.9290676.10.1109/ICIET48527.2019.9290676" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ICIET48527.2019.9290676.10.1109/ICIET48527.2019.9290676</a>
  18. [18] BERA, A., 2011. Fast vectorization and upscaling images with natural objects using canny edge detection. In: 3rd International Conference on Electronics Computer Technology, pp. 164-167, DOI: <a href="https://doi.org/10.1109/ICECTECH.2011.5941823.10.1109/ICECTECH.2011.5941823" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ICECTECH.2011.5941823.10.1109/ICECTECH.2011.5941823</a>
  19. [19] NIDELEA, M., ALEXEI, A. M., 2012. Method of the Square — A new algorithm for image vectorization. In: 9th International Conference on Communications (COMM), pp. 115-118, DOI: <a href="https://doi.org/10.1109/ICComm.2012.6262618.10.1109/ICComm.2012.6262618" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ICComm.2012.6262618.10.1109/ICComm.2012.6262618</a>
  20. [20] KIRSANOV, A., VAVILIN, A., JO, K., 2010. Contour-based algorithm for vectorization of satellite images. In: International Forum on Strategic Technology 2010, pp. 241-245, DOI: <a href="https://doi.org/10.1109/IFOST.2010.5668109.10.1109/IFOST.2010.5668109" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/IFOST.2010.5668109.10.1109/IFOST.2010.5668109</a>
  21. [21] MYERS, D.R., PRITCHARD, M.J., BROWN, M.D.J., 2001. Automated programming of an industrial robot through teach-by showing. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), pp. 4078-4083 Vol.4, DOI: <a href="https://doi.org/10.1109/ROBOT.2001.933255.10.1109/ROBOT.2001.933255" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ROBOT.2001.933255.10.1109/ROBOT.2001.933255</a>
  22. [22] FRIEDRICH, H., HOLLE, DILLMANN, J.R., 1998. Interactive generation of flexible robot programs. In: Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146), pp. 538-543 vol.1, DOI: <a href="https://doi.org/10.1109/ROBOT.1998.677029.10.1109/ROBOT.1998.677029" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ROBOT.1998.677029.10.1109/ROBOT.1998.677029</a>
  23. [23] CHULHEE, Y., JAEGON, A., YEON-HO, K., 2013. A fusion of computer vision technique and a visual programming language for edutainment robots. In: IEEE ISR 2013, pp. 1-5, DOI: <a href="https://doi.org/10.1109/ISR.2013.6695728.10.1109/ISR.2013.6695728" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ISR.2013.6695728.10.1109/ISR.2013.6695728</a>
  24. [24] NETO, P., PIRES, J.N., MOREIRA, A.P., 2010. CAD-based off-line robot programming. In: IEEE Conference on Robotics, Automation and Mechatronics, pp. 516-521, DOI: <a href="https://doi.org/10.1109/RAMECH.2010.5513141.10.1109/RAMECH.2010.5513141" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/RAMECH.2010.5513141.10.1109/RAMECH.2010.5513141</a>
  25. [25] https://new.abb.com/products/robotics/industrial-robots/irb-140 [Online], [Accessed: 09-2021] Available at https://new.abb.com/products/robotics/industrial-robots/irb-140.
  26. [26] https://www.emgu.com/wiki/index.php/Main_Page [Online], [Accessed: 09-2021] Emgu CV cross platform. Net wrapper. Available at https://www.emgu.com/wiki/index.php/Main_Page.
  27. [27] https://docs.opencv.org/3.4.15/d7/de1/tutorial_js_canny.html [Online], [Accessed: 09-2021], Available at https://docs.opencv.org/3.4.15/d7/de1/tutorial_js_canny.html.
Language: English
Page range: 67 - 77
Submitted on: Aug 25, 2021
Accepted on: Oct 22, 2021
Published on: Dec 7, 2021
Published by: Slovak University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2021 Igor Halenár, Lenka Halenárová, Matej Kovačic, published by Slovak University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.