[1] AMERINI, I., ANAGNOSTOPOULOS, A., MAIANO, L., CELSI, L.R., 2021. Deep learning for multimedia forensics Foundations and Trends in Computer Graphics and Vision. ISSN 15722740, DOI <a href="https://doi.org/10.1561/0600000096.10.1561/9781680838558" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1561/0600000096.10.1561/9781680838558</a>
[3] KHAN, M.A., MITTAL, M., GOYAL, L.M., ROY, S., 2021. A deep survey on supervised learning based human detection and activity classification methods. Multimedia Tools and Applications, 80(18), pp. 27867-27923. Cited 3 times. 1) https://www.scopus.com/inward/record.uri?eid=2-s2.0-85108802610&doi=10.1007%2fs11042-021-10811-5∂nerID=40&md5=cee3db6c37193a7a2a94d91aa4295bd1, DOI: <a href="https://doi.org/10.1007/s11042-021-10811-5.10.1007/s11042-021-10811-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s11042-021-10811-5.10.1007/s11042-021-10811-5</a>
[6] HUANG, S.W., CHENG, H.M., LIN S.F., 2019. Improved Imaging Resolution of Electrical Impedance Tomography Using Artificial Neural Networks for Image Reconstruction. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1551-1554, DOI: <a href="https://doi.org/10.1109/EMBC.2019.8856781.10.1109/EMBC.2019.885678131946190" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/EMBC.2019.8856781.10.1109/EMBC.2019.885678131946190</a>
[7] JAKIMOVSKI, G., DAVCEY, D., 2018. Lung cancer medical image recognition using Deep Neural Networks. In: 2018 Thirteenth International Conference on Digital Information Management (ICDIM), pp. 1-5, DOI: <a href="https://doi.org/10.1109/ICDIM.2018.8847136.10.1109/ICDIM.2018.8847136" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ICDIM.2018.8847136.10.1109/ICDIM.2018.8847136</a>
[8] WU, T. et al., 2019. T-SCNN: A Two-Stage Convolutional Neural Network for Space Target Recognition. In: IGARSS 2019 – 2019. IEEE International Geoscience and Remote Sensing Symposium, pp. 1334-1337, DOI: <a href="https://doi.org/10.1109/IGARSS.2019.8900185.10.1109/IGARSS.2019.8900185" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/IGARSS.2019.8900185.10.1109/IGARSS.2019.8900185</a>
[9] DOERING, A., WITTE, H., 1997. Combination of adaptive signal processing and neural classification using an extended backpropagation algorithm. In: Neural Networks for Signal Processing VII. Proceedings of the 1997. IEEE Signal Processing Society Workshop, pp. 296-305, DOI: <a href="https://doi.org/10.1109/NNSP.1997.622410.10.1109/NNSP.1997.622410" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/NNSP.1997.622410.10.1109/NNSP.1997.622410</a>
[13] DUMITRIU, T., DUMITRIU, R. P., MANTA, V., 2016. Application of Artificial Neural Networks for modelling drug release from a bicomponent hydrogel system. In: 2016 20th International Conference on System Theory, Control and Computing (ICSTCC), pp. 675-680, DOI: <a href="https://doi.org/10.1109/ICSTCC.2016.7790744.10.1109/ICSTCC.2016.7790744" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ICSTCC.2016.7790744.10.1109/ICSTCC.2016.7790744</a>
[14] BEKDAS, G., NIGDELI, S.M., YÜCEL, M., 2020. Artificial Intelligence and Machine Learning Applications in Civil, Mechanical, and Industrial Engineering. IGI Global. Retrieved from https://app.knovel.com/hotlink/toc/id:kpAIMLACM8/artificial-intelligence/artificial-intelligence10.4018/978-1-7998-0301-0
[17] TASNEEM, T., AFROZE, Z., 2019. A New Method of Improving Performance of Canny Edge Detection. In: 2nd International Conference on Innovation in Engineering and Technology (ICIET), pp. 1-5, DOI: <a href="https://doi.org/10.1109/ICIET48527.2019.9290676.10.1109/ICIET48527.2019.9290676" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ICIET48527.2019.9290676.10.1109/ICIET48527.2019.9290676</a>
[18] BERA, A., 2011. Fast vectorization and upscaling images with natural objects using canny edge detection. In: 3rd International Conference on Electronics Computer Technology, pp. 164-167, DOI: <a href="https://doi.org/10.1109/ICECTECH.2011.5941823.10.1109/ICECTECH.2011.5941823" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ICECTECH.2011.5941823.10.1109/ICECTECH.2011.5941823</a>
[19] NIDELEA, M., ALEXEI, A. M., 2012. Method of the Square — A new algorithm for image vectorization. In: 9th International Conference on Communications (COMM), pp. 115-118, DOI: <a href="https://doi.org/10.1109/ICComm.2012.6262618.10.1109/ICComm.2012.6262618" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ICComm.2012.6262618.10.1109/ICComm.2012.6262618</a>
[20] KIRSANOV, A., VAVILIN, A., JO, K., 2010. Contour-based algorithm for vectorization of satellite images. In: International Forum on Strategic Technology 2010, pp. 241-245, DOI: <a href="https://doi.org/10.1109/IFOST.2010.5668109.10.1109/IFOST.2010.5668109" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/IFOST.2010.5668109.10.1109/IFOST.2010.5668109</a>
[23] CHULHEE, Y., JAEGON, A., YEON-HO, K., 2013. A fusion of computer vision technique and a visual programming language for edutainment robots. In: IEEE ISR 2013, pp. 1-5, DOI: <a href="https://doi.org/10.1109/ISR.2013.6695728.10.1109/ISR.2013.6695728" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ISR.2013.6695728.10.1109/ISR.2013.6695728</a>
[25] https://new.abb.com/products/robotics/industrial-robots/irb-140 [Online], [Accessed: 09-2021] Available at https://new.abb.com/products/robotics/industrial-robots/irb-140.
[26] https://www.emgu.com/wiki/index.php/Main_Page [Online], [Accessed: 09-2021] Emgu CV cross platform. Net wrapper. Available at https://www.emgu.com/wiki/index.php/Main_Page.
[27] https://docs.opencv.org/3.4.15/d7/de1/tutorial_js_canny.html [Online], [Accessed: 09-2021], Available at https://docs.opencv.org/3.4.15/d7/de1/tutorial_js_canny.html.