[1] C. LIU, A. M. OMER and X. KUN OUYANG. 2018. Adsorptive removal of cationic methylene blue dye using carboxymethyl cellulose/k-carrageenan/activated montmorillonite composite beads: Isotherm and kinetic studies. Int. J. Biol. Macromol., Vol. 106, pp. 823–833. doi: 10.1016/j.ijbiomac.2017.08.084.10.1016/j.ijbiomac.2017.08.08428834705
[2] N. R. J. HYNES et al. 2020. Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector -A comprehensive review. J. Clean. Prod., Vol. 272, p. 122636. doi: 10.1016/j.jclepro.2020.122636.10.1016/j.jclepro.2020.122636
[4] M. A. HASSAAN and A. EL NEMR. 2017. Health and Environmental Impacts of Dyes : Mini Review. Am. J. Environ. Sci. Eng., 1(3), pp. 64–67. doi: 10.11648/j.ajese.20170103.11.
[5] A. ESFANDIARI, T. KAGHAZCHI and M. SOLEIMANI. 2012. Preparation and evaluation of activated carbons obtained by physical activation of polyethyleneterephthalate (PET) wastes. J. Taiwan Inst. Chem. Eng., 43(4), pp. 631–637. doi: 10.1016/j.jtice.2012.02.002.10.1016/j.jtice.2012.02.002
[6] A. ELSAGH, O. MORADI, A. FAKHRI, F. NAJAFI, R. ALIZADEH and V. HADDADI. 2017. Evaluation of the potential cationic dye removal using adsorption by graphene and carbon nanotubes as adsorbents surfaces. Arab. J. Chem., Vol. 10, pp. S2862–S2869. doi: 10.1016/j.arabjc.2013.11.013.10.1016/j.arabjc.2013.11.013
[7] M. WAWRZKIEWICZ, M. WIŚNIEWSKA, V. M. GUN’KO and V. I. ZARKO. 2015. Adsorptive removal of acid, reactive and direct dyes from aqueous solutions and wastewater using mixed silica-alumina oxide. Powder Technol., Vol. 278, pp. 306–315. doi: 10.1016/j.powtec.2015.03.035.10.1016/j.powtec.2015.03.035
[8] H. LAKSACI, A. KHELIFI, M. TRARI and A. ADDOUN. 2017. Synthesis and characterization of microporous activated carbon from coffee grounds using potassium hydroxides. J. Clean. Prod., Vol. 147, pp. 254–262. doi: 10.1016/j.jclepro.2017.01.102.10.1016/j.jclepro.2017.01.102
[9] U. A. EDET and A. O. IFELEBUEGU. 2020. Kinetics, isotherms, and thermodynamic modeling of the adsorption of phosphates from model wastewater using recycled brick waste. Processes, 8(6), doi: 10.3390/PR8060665.10.3390/pr8060665
[10] C. MUTHUKUMARAN, V. M. SIVAKUMAR and M. THIRUMARIMURUGAN. 2016. Adsorption isotherms and kinetic studies of crystal violet dye removal from aqueous solution using surfactant modified magnetic nanoadsorbent. J. Taiwan Inst. Chem. Eng., Vol. 63, pp. 354–362. doi: 10.1016/j.jtice.2016.03.034.10.1016/j.jtice.2016.03.034
[11] Y. H. LIN and J. Y. LEU. 2008. Kinetics of reactive azo-dye decolorization by Pseudomonas luteola in a biological activated carbon process. Biochem. Eng. J., 39(3), pp. 457–467. doi: 10.1016/j.bej.2007.10.015.10.1016/j.bej.2007.10.015
[12] W. PLAZINSKI, W. RUDZINSKI and A. PLAZINSKA. 2009. Theoretical models of sorption kinetics including a surface reaction mechanism: A review. Adv. Colloid Interface Sci., 152(1–2) pp. 2–13. doi: 10.1016/j.cis.2009.07.009.10.1016/j.cis.2009.07.00919735907
[13] N. ZIAEIFAR, M. KHOSRAVI, M. A. BEHNAJADY, M. R. SOHRABI and N. MODIRSHAHLA. 2015. Optimizing adsorption of Cr(VI) from aqueous solutions by NiO nanoparticles using Taguchi and response surface methods. Water Sci. Technol., 72(5), pp. 721–729. doi: 10.2166/wst.2015.253.10.2166/wst.2015.25326287830
[14] R. A. CANALES-FLORES and F. PRIETO-GARCÍA. 2020. Taguchi optimization for production of activated carbon from phosphoric acid impregnated agricultural waste by microwave heating for the removal of methylene blue. Diam. Relat. Mater., Vol. 109, No. August, p. 108027. doi: 10.1016/j.diamond.2020.108027.10.1016/j.diamond.2020.108027
[15] C. SILVEIRA, Q. L. SHIMABUKU-BIADOLA, M. F. SILVA, M. F. VIEIRA and R. BERGAMASCO. 2020. Development of an activated carbon impregnation process with iron oxide nanoparticles by green synthesis for diclofenac adsorption. Environ. Sci. Pollut. Res., 27(6), pp. 6088–6102. doi: 10.1007/s11356-019-07329-7.10.1007/s11356-019-07329-731865561