Have a personal or library account? Click to login

Preliminary Study Into the Decolorization of Selected Dyes By the Ozone Application

Open Access
|Aug 2021

References

  1. [1] R. AHMAD, K. ANSARI. 2021. Comparative study for adsorption of congo red and methylene blue dye on chitosan modified hybrid nanocomposite. Process Biochem., Vol. 108, No. May, pp. 90–102.
  2. [2] S. SAMAI. 2020. Dyeiny Process 100, pp. 1–6.
  3. [3] B. CHAUDHARY and T. E. VIOLET. 2020. Chemistry of synthetic dyes: A review. J. Interdiscipl. Cycle Res., XII(390), pp. 390–396.
  4. [4] A. R. QUAFF, S. VENKATESH and K. VENKATESH. 2020. Degradation of Azo Dye by Ozone Oxidation: Cost Analysis and Buffering Effects on Dye Decomposition. Natl. Acad. Sci. Lett., pp. 9–11.
  5. [5] S. K. PANDA et al. 2021. Magnetite nanoparticles as sorbents for dye removal: a review, No. 0123456789. Springer International Publishing.
  6. [6] R. BUSHRA, S. MOHAMAD, Y. ALIAS, Y. JIN and M. AHMAD. 2021. Current approaches and methodologies to explore the perceptive adsorption mechanism of dyes on low-cost agricultural waste: A review. Microporous Mesoporous Mater., p. 111040.
  7. [7] A. KALRA and A. GUPTA. 2020. Recent advances in decolourization of dyes using iron nanoparticles: A mini review. Mater. Today Proc., vol. 36, pp. 689–696.
  8. [8] M. BENJELLOUN, Y. MIYAH, G. AKDEMIR, F. ZERROUQ and S. LAIRINI. 2021. Recent Advances in Adsorption Kinetic Models : Their Application to Dye Types. Arab. J. Chem., 14, (4), p. 103031.
  9. [9] L. THESNAAR, J. J. BEZUIDENHOUT, A. PETZER, J. P. PETZER and T. T. CLOETE. 2020. Methylene blue analogues: In vitro antimicrobial minimum inhibitory concentrations and in silico pharmacophore modelling. Eur. J. Pharm. Sci., vol. 157, No. October 2020.
  10. [10] A. AHMAD, N. KHAN, B. S. GIRI, P. CHOWDHARY and P. CHATURVEDI. 2020. Removal of methylene blue dye using rice husk, cow dung and sludge biochar: Characterization, application, and kinetic studies. Bioresour. Technol., vol. 306, No. January, p. 123202.
  11. [11] F. MASHKOOR and A. NASAR. 2020. Magsorbents: Potential candidates in wastewater treatment technology – A review on the removal of methylene blue dye. J. Magn. Magn. Mater., Vol. 500, No. January, p. 166408.
  12. [12] M. A. ADEBAYO, J. I. ADEBOMI, T. O. ABE, and F. I. AREO. 2020. Removal of aqueous Congo red and malachite green using ackee apple seed–bentonite composite. Colloids Interface Sci. Commun., Vol. 38, No. June, p. 100311.
  13. [13] F. MIRZAEE, A. EKRAMIPOOYA and M. REZA. 2020. Selective separation of Congo Red from a mixture of anionic and cationic dyes using magnetic-MOF : Experimental and DFT study. J. Mol. Liq., Vol. 318, p. 114051.
  14. [14] W. NEUGEBAUER, C. SESSA, C. STEUER, T. ALLSCHER and H. STEGE. 2019. Naphthol Green – a forgotten artists’ pigment of the early 20th century. History, chemistry and analytical identification. J. Cult. Herit., Vol. 36, No March, pp. 153–165.
  15. [15] Y. T. HUNG., H. H. P. BUKOLA, M. ADESANMI. 2020. Coagulation-Flocculation Treatment for Naphthol Green Band Flour Wastewater. Int. J. Mod. Trends Sci. Technol., 6(12), pp. 190–197.
  16. [16] E. GUNASUNDARI, P. SENTHIL KUMAR, N. RAJAMOHAN and P. VELLAICHAMY. 2020. Feasibility of naphthol green-b dye adsorption using microalgae: Thermodynamic and kinetic analysis. Desalin. Water Treat., Vol. 192, pp. 358–370.
  17. [17] A. A. ALI, S. R. EL-SAYED, S. A. SHAMA, T. Y. MOHAMED and A. S. AMIN. 2020. Fabrication and characterization of cerium oxide nanoparticles for the removal of naphthol green b dye. Desalin. Water Treat., Vol. 204, pp. 124–135.
  18. [18] M. M. IQBAL et al. 2021. Effective sequestration of Congo red dye with ZnO/cotton stalks biochar nanocomposite: MODELING, reusability and stability. J. Saudi Chem. Soc., 25(2), p. 101176.
  19. [19] R. RASHID, I. SHAFIQ, P. AKHTER, & MUHAMMAD, J. IQBAL and M. HUSSAIN. A state-of-the-art review on wastewater treatment techniques: the effectiveness of adsorption method.
  20. [20] N. ATHIKOH, E. YULIANTO, A. W. KINANDANA, E. SASMITA and A. H. SANJANI. 2020. Reduction of Methylene Blue by Using Direct Continuous Ozone. J. Environ. Earth Sci., 10(4), pp. 46–56.
  21. [21] J. X. LI, MENGRU, ZHENGLEI HE. 2021. A comparative study of ozonation on aqueous reactive dyes and reactive-dyed cotton. Color. Technol., pp. 1–13.
  22. [22] D. GEORGIOU. 2017. Destruction of Azo-Reactive Dyes by Ozonation and the Synergetic Effect of a Radio-Frequency Alternating Electric Field Inductance Device. Curr. Trends Fash. Technol. Text. Eng., 1(2), pp. 42–47.
  23. [23] M. SHAWAQFAH, F. A. AL MOMANI and Z. A. AL-ANBER. 2012. Ozone treatment of aqueous solutions containing commercial dyes. Afinidad, 69(559), pp. 229–234.
  24. [24] M. A. ADELIN, G. GUNAWAN, M. NUR, A. HARIS, D. S. WIDODO and L. SUYATI. 2020. Ozonation of methylene blue and its fate study using LC-MS/MS. J. Phys. Conf. Ser., 1524(1).10.1088/1742-6596/1524/1/012079
  25. [25] L. SUMEGOVÁ, J. DERCO and M. MELICHER. 2013. Influence of reaction conditions on the ozonation process. Acta Chim. Slovaca, 6(2), pp. 168–172.
  26. [26] T. TAPALAD, A. NERAMITTAGAPONG, S. NERAMITTAGAPONG and M. BOONMEE. 2008. Degradation of congo red dye by ozonation. Chiang Mai J. Sci., 35(1), pp. 63–68.
  27. [27] P. GHARBANI, S. M. TABATABAII and A. MEHRIZAD. 2008. Removal of Congo red from textile wastewater by ozonation. Int. J. Environ. Sci. Technol., 5(4), pp. 495–500.
  28. [28] J. M. ORF, M. FERNANDO and R. PEREIRA. 2006. Ozonation of textile effluents and dye solutions under continuous operation : Influence of operating parameters. Vol. 137, pp. 1664–1673.
  29. [29] C. TIZAOUI and N. GRIMA. 2011. Kinetics of the ozone oxidation of Reactive Orange 16 azodye in aqueous solution. Chem. Eng. J., 173(2), pp. 463–473.
Language: English
Page range: 37 - 44
Submitted on: Apr 19, 2021
Accepted on: May 27, 2021
Published on: Aug 5, 2021
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2021 Kristína Gerulová, Zuzana Sanny, Alexandra Kucmanová, Eva Buranská, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.