[1] BOEL, R. K. 2002. Adaptive supervisory control. In: Synthesis and Control of Discrete Event Systems (Caillaud et al., Ed.), Kluwer Academic Publishers, Boston. pp. 115-124. ISBN 0-7923-7639-0.10.1007/978-1-4757-6656-1_7
[4] FLOCHOVÁ, J., HRÚZ, B. 1996. Supervisory control for discrete event dynamic systems based on Petri nets. In: Proceeding of International conference on Process control. Czech Republic, Horní Bečva, 2, pp. 80-83.
[5] FLOCHOVÁ, J., LIPTÁK, R., BACHRATÝ, P. 2003. An on line course for supervisory control teaching. In: Proceeding of 6th IFAC Symposium on Advances in Control education ACE 2003. 6th Symposium on Advances in Control Education: Finland, Oulu, pp. 198-203. Elsevier Science, ltd., 2004. ISBN-10: 9780080435596; ISBN-13: 978-0080435596.
[6] A. GIUA, F. DICESARE. 1994. Petri Net Structural Analysis for Supervisory Control. IEEE Trans. on Robotics and Automation, 10(2), 185-195. ISSN 1042-296X.10.1109/70.282543
[7] HO, Y.(ed.) 1982. Discrete Event Dynamic Systems: Analyzing complexity and performance in the Modern World. A Selected Preprint Volume. The Institute of Electrical and Electronics Engineers, Inc., New York.
[8] HRÚZ, B., FLOCHOVÁ, J. 1999. The supervisory control design based on the Petri net reachability graph. Journal of Electrical Engineering, 50(11-12), 380-385. ISSN 1335-3632.
[10] KOMENDA Jan, MASOPUST Tomáš, VAN SCHUPPEN Jan H. 2012. Supervisory Control Synthesis of Discrete-Event Systems using a Coordination Scheme. Automatica,48(2), 247-254. ISSN 0005-1098.10.1016/j.automatica.2011.07.008
[11] KOMENDA Jan, MASOPUST Tomáš, VAN SCHUPPEN Jan H. 2015. Coordination Control of Discrete-Event Systems Revisited. Discrete Event Dynamic Systems,25 (1), 65-94. ISBN 0924-6703 (Print) 1573-7594 (Online).10.1007/s10626-013-0179-x
[13] LI, Y., WONHAM, W.M. 1993. Control of Discrete-Event Systems I-The based Model. IEEE Transaction on Automatic Control, 38(8), 1214-1227. ISSN 0018-9286.10.1109/9.233154
[16] MOODY J.O., ANTSAKLIS, P.J. 2000. Petri Net Supervisors for DES with Uncontrollable and Unobservable Transitions. IEEE Transaction on Automatic Control, 45(3), 462-476. ISSN 0018-9286.10.1109/9.847725
[18] RAMADGE, P., WONHAM, W.M. 1987. Supervisory control of a class of discrete event processes, SIAM J. Control and optimatization.25(1), 206-230. ISSN 0363-0129 (print).10.1137/0325013
[20] SREENIVAS, R.S. 1997. On the existence of supervisory policies that enforce liveness in discrete-event dynamic systems modeled by Petri nets. IEEE Transaction on Automatic Control, 42(7), 928-945. ISSN 0018-9286.10.1109/9.599972
[21] STREMERSCH, G., BOEL, R.K. 2001. Decomposition of supervisory control problem for Petri nets. IEEE Transaction on Automatic Control, 46(9), 1490-1496. ISSN 0018-9286.10.1109/9.948484
[24] TAKAI, S. 2018. Maximally permissive supervisory control of nondeterministic discrete event systems with nondeterministic specification. In: Proceeding of 57th IEEE Conference on Decision and Control. 57th Conference on Decision and Control: USA, Florida, Miami Beach, pp. 3975-3980. ISBN 978-1-5386-1395-5.10.1109/CDC.2018.8618909
[25] WONG. K.C., VAN SCHUPPEN, J. 1996. Decentralized Supervisory Control of DES with Communication, In: Preprints of International Workshop on Discrete Event Systems WODES’1996. Workshop on Discrete Event Systems: UK, Scotland, Edinburg, pp.284-289. ISBN 0 85296 664 4.
[26] YAMALIDOU, K., MOODY, J. LEMMON, M., ANTSAKLIS, P. 1996. Feedback Control of Petri Nets Based on Place Invariants. Automatica. 32(1), 15-28. ISSN 0005-1098.10.1016/0005-1098(95)00103-4
[28] ZHOU, C., KUMAR, R. AND JIANG, S. 2006. Control of nondeterministic discrete event system for bisimulation equivalence. IEEE Transaction on Automatic Control,51(5), pp 754-765. ISSN 0018-9286.10.1109/TAC.2006.875036
[29] ZHOU, C., KUMAR, R. 2011. Bisimilarity enforcement for discrete event system using deterministic control. IEEE Transaction on Automatic Control,56(12), 2986-2991. ISSN 0018-9286.10.1109/TAC.2011.2161790