Have a personal or library account? Click to login

References

  1. [1] MUTHUGNANAMBIKA, M., PADMAVATHI, S. 2017. Feature detection for color images using SURF. In: 4th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, pp. 1-4. doi: 10.1109/ICACCS.2017.801457210.1109/ICACCS.2017.8014572
  2. [2] ZHIHENG ZHOU, XIAOWEN OU and JING XU. 2013. SURF feature detection method used in object tracking. In: 2013 International Conference on Machine Learning and Cybernetics, Tianjin, pp. 1865-1868. doi: 10.1109/ICMLC.2013.689089910.1109/ICMLC.2013.6890899
  3. [3] HONG, C., CHENG-DONG, W., DONG-YUE, C. and ZI-WEI, L. 2015. A new interest point extraction method. In: The 27th Chinese Control and Decision Conference (2015 CCDC), Qingdao, pp. 5414-5417. doi: 10.1109/CCDC.2015.716176110.1109/CCDC.2015.7161761
  4. [4] LEUTENEGGER, S., CHLI, M., SIEGWART, R. Y. 2011. BRISK: Binary Robust Invariant Scalable Keypoints. In: Computer Vision ICCV 2011. The IEEE International Conference on Computer Vision: Spain, Barcelona, pp. 2548 – 2555. ISBN 978-1-4577-1101-510.1109/ICCV.2011.6126542
  5. [5] ALCANTARILLA, P. F., BARTOLI, A., DAVISON, A. J. 2012. KAZE Features. In: 12th European Conference on Computer Vision: Italy, Florence, October 7-13, LNCS 7577, pp. 214–227. ISBN 978-3-642-33718-510.1007/978-3-642-33783-3_16
  6. [6] RUSSAKOVSKY, O., DENG, J. at al. 2015. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 115(3), 211–252. ISSN 1573-140510.1007/s11263-015-0816-y
  7. [7] MAIR, E., HAGER, G., BURSCHKA, D., SUPPA, M., HIRZINGER, G. (2010). Adaptive and generic corner detection based on the accelerated segment test. Lecture Notes in Computer Science, 2 ed., vol. 6312 LNCS, 183-196. ISSN 1611-334910.1007/978-3-642-15552-9_14
  8. [8] ŠIKUDOVÁ, E., at al. 2011. Počítačové videnie (Computer vision). Detekcia a rozpoznávanie objektov (Objects detection and discrimination). Prague: Wikina Publishing House, 2011. 400 p. ISBN: 978-80-87925-06-5.
  9. [9] YOUSEFI, S., NAJJAR GHABEL, S. 2016. A Survey on Object Detection Methods in Visual Sensor Networks. In: International Journal of Advanced Smart Sensor Network Systems (IJASSN). 10.5121/ijassn.2016.6201.10.5121/ijassn.2016.6201
  10. [10] http://www.mathworks.com, Abhishek, G. - Machine Learning with MATLAB [Online]. [Accessed: 08-2019] Available at http://www.mathworks.com/videos/machine-learning-with-matlab-81984.html.
  11. [11] www.mathworks.com, Avinash, N. - Computer Vision Made Easy [Online]. [Accessed: 08-2019] Available at http://www.mathworks.com/videos/computer-vision-made-easy-81802.html.
  12. [12] www.mathworks.com, Shashank, P., Avinash, N. - Deep Learning for Computer Vision with MATLAB [Online]. [Accessed: 08-2019] Available at http://www.mathworks.com/videos/deep-learning-for-computer-vision-with-matlab-116080.html.
  13. [13] www.mathworks.com, Tannenbaum, B. - Computer Vision with MATLAB for Object Detection and Tracking [Online]. [Accessed: 08-2019] Available at http://www.mathworks.com/videos/computer-vision-with-matlab-for-object-detection-and-tracking-81866.html.
  14. [14] www.mathworks.com, Matlab Documentation [Online]. [Accessed: 08-2019] Available at https://www.mathworks.com/help/matlab/index.html.
Language: English
Page range: 7 - 18
Submitted on: Aug 12, 2019
Accepted on: Sep 16, 2019
Published on: Dec 16, 2019
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Martin Juhás, Bohuslava Juhásová, Pavol Reménység, Roman Danel, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.