Have a personal or library account? Click to login

References

  1. [1] BANERJEE, S., CHATTOPADHYAYA, M.C. 2017. Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Arabian Journal of Chemistry [online]. 10, S1629–S1638 [vid. 2019-04-30]. ISSN 1878-5352. Available at: doi:10.1016/J.ARABJC.2013.06.00510.1016/j.arabjc.2013.06.005
  2. [2] PATHANIA, D., SHARMA, S., SINGH, P. 2017. Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arabian Journal of Chemistry [online]. 10, S1445–S1451 [vid. 2019-04-30]. ISSN 1878-5352. Available at: doi:10.1016/J.ARABJC.2013.04.02110.1016/j.arabjc.2013.04.021
  3. [3] RAFATULLAH, M., SULAIMAN, O., HASHIM, R., AHMAD, A. 2010. Adsorption of methylene blue on low-cost adsorbents: A review. Journal of Hazardous Materials [online]. 177(1–3), 70–80 [vid. 2019-04-30]. ISSN 0304-3894. Available at: doi:10.1016/J.JHAZMAT.2009.12.04710.1016/j.jhazmat.2009.12.04720044207
  4. [4] SLEIMAN, M., VILDOZO, D., FERRONATO, C., CHOVELON, J. M. 2007. Photocatalytic degradation of azo dye Metanil Yellow: Optimization and kinetic modeling using a chemometric approach. Applied Catalysis B: Environmental [online]. 77(1–2), 1–11 [vid. 2019-04-30]. ISSN 0926-3373. Available at: doi:10.1016/J.APCATB.2007.06.01510.1016/J.APCATB.2007.06.015
  5. [5] SOHRABI, M.R., GHAVAMI, M. 2008. Photocatalytic degradation of Direct Red 23 dye using UV/TiO2: Effect of operational parameters. Journal of Hazardous Materials [online]. 153(3), 1235–1239 [vid. 2019-04-30]. ISSN 0304-3894. Available at: doi:10.1016/J.JHAZMAT.2007.09.11410.1016/j.jhazmat.2007.09.11418006230
  6. [6] ABBASI, M., RAZZAGHI, N. 2008. ASL. Sonochemical degradation of Basic Blue 41 dye assisted by nanoTiO2 and H2O2. Journal of Hazardous Materials [online]. 153(3), 942–947 [vid. 2019-04-30]. ISSN 0304-3894. Available at: doi:10.1016/J.JHAZMAT.2007.09.04510.1016/j.jhazmat.2007.09.04517950996
  7. [7] ZAGHBANI, N., HAFIANE, A., DHAHBI, M. 2008. Removal of Safranin T from wastewater using micellar enhanced ultrafiltration. Desalination [online]. 222(1–3), 348–356 [vid. 2019-04-30]. ISSN 0011-9164. Available at: doi:10.1016/J.DESAL.2007.01.14810.1016/j.desal.2007.01.148
  8. [8] WU, J. S., LIU, Ch. H., CHU, K. H., SUEN, S. Y. 2008. Removal of cationic dye methyl violet 2B from water by cation exchange membranes. Journal of Membrane Science [online]. 309(1–2), 239–245 [vid. 2019-04-30]. ISSN 0376-7388. Available at: doi:10.1016/J.MEMSCI.2007.10.03510.1016/j.memsci.2007.10.035
  9. [9] FAN, L., ZHOU, Y., YANG, W., CHEN, G., YANG, F. 2008. Electrochemical degradation of aqueous solution of Amaranth azo dye on ACF under potentiostatic model. Dyes and Pigments [online]. 76(2), 440–446 [vid. 2019-04-30]. ISSN 0143-7208. Available at: doi:10.1016/J.DYEPIG.2006.09.01310.1016/J.DYEPIG.2006.09.013
  10. [10] ZHU, M. X, LEE, L., WANG, H. H., WANG, Z. 2007. Removal of an anionic dye by adsorption/precipitation processes using alkaline white mud. Journal of Hazardous Materials [online]. 149(3), 735–741 [vid. 2019-04-30]. ISSN 0304-3894. Available at: doi:10.1016/J.JHAZMAT.2007.04.03710.1016/j.jhazmat.2007.04.03717532132
  11. [11] SUDARJANTO, G., KELLER-LEHMANN, B., KELLER, J. 2006. Optimization of integrated chemical–biological degradation of a reactive azo dye using response surface methodology. Journal of Hazardous Materials [online]. 138(1), 160–168 [vid. 2019-04-30]. ISSN 0304-3894. Available at: doi:10.1016/J.JHAZMAT.2006.05.05410.1016/J.JHAZMAT.2006.05.054
  12. [12] SARRIA, V., DERONT, M., PÉRINGER, P., PULGARIN, C. 2003. Degradation of a biorecalcitrant dye precursor present in industrial wastewaters by a new integrated iron(III) photoassisted–biological treatment. Applied Catalysis B: Environmental [online]. 40(3), 231–246 [vid. 2019-04-30]. ISSN 0926-3373. Available at: doi:10.1016/S0926-3373(02)00162-510.1016/S0926-3373(02)00162-5
  13. [13] GARCÍA-MONTAÑO, J., PÉREZ-ESTRADA, L., OLLER, I., MALDONADO, M. I. 2008. Francesc TORRADES a José PERAL. Pilot plant scale reactive dyes degradation by solar photo-Fenton and biological processes. Journal of Photochemistry and Photobiology A: Chemistry [online]. 195(2–3), 205–214 [vid. 2019-04-30]. ISSN 1010-6030. Available at: doi:10.1016/J.JPHOTOCHEM.2007.10.00410.1016/j.jphotochem.2007.10.004
  14. [14] LODHA, B., CHAUDHARI, S. 2007. Optimization of Fenton-biological treatment scheme for the treatment of aqueous dye solutions. Journal of Hazardous Materials [online]. 148(1–2), 459–466 [vid. 2019-04-30]. ISSN 0304-3894. Available at: doi:10.1016/J.JHAZMAT.2007.02.06110.1016/J.JHAZMAT.2007.02.061
  15. [15] HAMEED, B.H., DAUD, F.B.M. 2008. Adsorption studies of basic dye on activated carbon derived from agricultural waste: Hevea brasiliensis seed coat. Chemical Engineering Journal [online]. 139(1), 48–55 [vid. 2019-04-30]. ISSN 1385-8947. Available at: doi:10.1016/J.CEJ.2007.07.08910.1016/J.CEJ.2007.07.089
  16. [16] WU, F. Ch., TSENG, R. L. 2008. High adsorption capacity NaOH-activated carbon for dye removal from aqueous solution. Journal of Hazardous Materials [online]. 152(3), 1256–1267 [vid. 2019-04-30]. ISSN 0304-3894. Available at: doi:10.1016/J.JHAZMAT.2007.07.10910.1016/j.jhazmat.2007.07.109
  17. [17] FORGACS, E., CSERHÁTI, T., OROS, G. 2004. Removal of synthetic dyes from wastewaters: a review. Environment International [online]. 30(7), 953–971 [vid. 2019-04-30]. ISSN 0160-4120. Available at: doi:10.1016/J.ENVINT.2004.02.00110.1016/J.ENVINT.2004.02.001
  18. [18] HIND, A. R., BHARGAVA, S. K., GROCOTT, S. C. 1999. The surface chemistry of Bayer process solids: a review. Colloids and Surfaces A: Physicochemical and Engineering Aspects [online]. 146(1–3), 359–374 [vid. 2019-04-30]. ISSN 0927-7757. Available at: doi:10.1016/S0927-7757(98)00798-510.1016/S0927-7757(98)00798-5
  19. [19] SCHWARZ, M., LALÍK, V. 2011. Biologické účinky, vylúhovateľnosť a testovanie ekotoxicity odpadového kalu z výroby oxidu hlinitého (Biological effects, leachability and tests of ecotoxicity of waste mud from aluminium oxide producction). Chemické Listy (Chemical letters), 105(7), 518–523.
  20. [20] KAFKA, R., ČAMBÁLOVÁ, L. 2001. Z dejín výroby hliníka na Slovensku (From the history of aluminium production in Slovakia). ISBN 978-80-88892-39-7.
  21. [21] SCHWARZ, M., LALÍK, V., VANEK, M. 2001. Možnosti využitia odpadového kalu z výroby oxidu hlinitého (Options of utilising the waste mud from aluminium oxide production). Chemické Listy (Chemical letters), 105(7), 114–121.
  22. [22] MICHAELI, E. 2012. Skládka priemyselného odpadu lúženca ako príklad environmentálnej záťaže pri bývalej Niklovej huti Sereď (The landfill of industrial waste of black nickle mud near the former Nickel Smelter in Sereď as an example of environmental burden). Životné prostredie, 62(2), 63–68.
  23. [23] MICHAELI, E., BOLTIŽIAR, M. 2010. Vybrané lokality environmentálnych záťaží v Slovenskej republike (Selected localities of environmental burdens in the Slovak Republic). GEOGRAPHIA CASSOVIENSIS, 4(2), 114–119.
  24. [24] SOLDÁNOVÁ, Z., SOLDÁN, M., ČAPLOVIČ, Ľ. 2009. Štúdium kinetiky adsorpcie CrVI červeným kalom a lúžencom (Study of CrVI adsorption kinetics by the red mud and black nickle mud). Waste forum, 2, 58–65.
Language: English
Page range: 73 - 79
Submitted on: May 2, 2019
Accepted on: Jun 26, 2019
Published on: Sep 3, 2019
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2019 Maroš Soldán, Hana Kobetičová, Tomáš Štefko, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.