5. Montano-Loza AJ, Duarte-Rojo A, Meza-Junco J et al. Inclusion of sarcopenia within MELD (MELDSarcopenia) and the prediction of mortality in patients with cirrhosis. Clin Transl Gastroenterol. 2015; 6:e102.10.1038/ctg.2015.31481625926181291
6. Bhanji RA, Moctezuma-Velazquez C, Duarte-Rojo A et al. Myosteatosis and sarcopenia are associated with hepatic encephalopathy in patients with cirrhosis. Hep Intl. 2018; 12:377–86.2988199210.1007/s12072-018-9875-929881992
7. van Vugt JLA, Buettner S, Alferink LJM et al. Low skeletal muscle mass is associated with increased hospital costs in patients with cirrhosis listed for liver transplantation-a retrospective study. Transpl Int. 2018; 31:165–74.10.1111/tri.1304828871624
8. Ha Y, Kim D, Han S et al. Sarcopenia Predicts prognosis in patients with newly diagnosed hepatocellular carcinoma, independent of tumor stage and liver function. Cancer Res Treat. 2018; 50:843–51.10.4143/crt.2017.232605695828882021
10. Tsien C, Davuluri G, Singh D et al. Metabolic and molecular responses to leucine-enriched branched chain amino acid supplementation in the skeletal muscle of alcoholic cirrhosis. Hepatology. 2015; 61:2018–29.10.1002/hep.27717444161125613922
11. Qiu J, Thapaliya S, Runkana A et al. Hyperammonemia in cirrhosis induces transcriptional regulation of myostatin by an NF-kappaB-mediated mechanism. Proc Natl Acad Sci USA. 2013; 110:18162–7.10.1073/pnas.1317049110
13. Thapaliya S, Runkana A, McMullen MR et al. Alcohol-induced autophagy contributes to loss in skeletal muscle mass. Autophagy. 2014; 10:677–90.10.4161/auto.27918
14. Tsien CD, McCullough AJ, Dasarathy S. Late evening snack: exploiting a period of anabolic opportunity in cirrhosis. J Gastroenterol Hepatol. 2012; 27:430–41.10.1111/j.1440-1746.2011.06951.x
15. Trovato F, Aiello F, Larocca L, Taylor-Robinson S. The role of physical activity and nutrition in the sarcopenia of cirrhosis. J Funct Morphol Kinesiol. 2016; 1:118e25. https://doi.org/10.3390/jfmk1010118.10.3390/jfmk1010118
17. Dam G, Sorensen M, Buhl M et al. Muscle metabolism, and whole blood amino acid profile in patients with liver disease. Scand J Clin Lab Invest. 2015; 75:674–80.
18. Loguercio C, Sava E, Marmo R, del Vecchio Blanco C, Coltorti M. Malnutrition in cirrhotic patients: anthropometric measurements as a method of assessing nutritional status. Brit J Clin Pract. 1990; 44:98–101.
19. Leong D, Teo K, Rangarajan S. Prognostic value of grip strength: findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet. 2015; 386:266–73.10.1016/S0140-6736(14)62000-6
22. Giusto M, Lattanzi B, Albanese C et al. Sarcopenia in liver cirrhosis: the role of computed tomography scan for the assessment of muscle mass compared with dual-energy X-ray absorptiometry and anthropometry. Eur J Gastro Hepatol. 2015; 27:328–34.10.1097/MEG.000000000000027425569567
23. Dichi JB, Dichi I, Maio R et al. Wholebody protein turnover in malnourished patients with child class B and C cirrhosis on diets low to high in protein energy. Nutrition. 2001; 17:239–42.10.1016/S0899-9007(00)00567-0
24. 24. Tsien CD, McCullough AJ, Dasarathy S. Late evening snack: exploiting a period of anabolic opportunity in cirrhosis. J Gastroenterol Hepatol. 2012; 27:430–41.10.1111/j.1440-1746.2011.06951.x22004479
27. Kawaguchi T, Taniguchi E, Sata M. Effects of oral branched-chain amino acids on hepatic encephalopathy and outcome in patients with liver cirrhosis. Nutr Clin Pract. 2013; 28:580e8. https://doi.org/10.1177/.
29. Moctezuma-Velazquez C, Low G, Mourtzakis M et al. Association between low testosterone levels and sarcopenia in cirrhosis: a cross-sectional study. Ann Hepatol. 2018; 17:615–23.10.5604/01.3001.0012.093029893704
30. Lang CH, Frost RA, Svanberg E, Vary TC. IGF-I/IGFBP-3 ameliorates alterations in protein synthesis, eIF4E availability, and myostatin in alcohol fed rats. Am J Physiol Endocrinol Metab. 2004; 286:E916–26.10.1152/ajpendo.00554.200314749210