Have a personal or library account? Click to login
Maximum arrangements of nonattacking kings on the 2n × 2n chessboard Cover

Maximum arrangements of nonattacking kings on the 2n × 2n chessboard

Open Access
|Jun 2025

References

  1. [AM66] M. Abramson and W. Moser, Combinations, Successions and the n-Kings Problem, Math. Mag. (1966) pp. 269–273.
  2. [BS09] J. Bell and B. Stevens, A survey of known results and research areas for n-queens, Discrete Math. 309 (2009) no. 1, pp. 1–31.
  3. [Bro19] T. M. Brown, The problem of pawns, Elec. J. Combin. 22(3) (2019) P3.21.
  4. [Brown] T. M. Brown, Nonattacking Arrangements of Kings on Even Length Chessboard, Mathematica Notebook Archive, https://notebookarchive.org/2022-02-0zki6rn.
  5. [CJPRSY06] N. J. Calkin, K. James, S. Purvis, S. Race, K. Schneider and M. Yancey, Counting kings: as easy as λ1, λ2, λ3, . . ., Proceedings of the Thirty-Seventh Southeastern International Conference on Combinatorics, Graph Theory and Computing. Congr. Numer. 183 (2006) pp. 83-95.
  6. [CJPRSY06] N. J. Calkin, K. James, S. Purvis, S. Race, K. Schneider and M. Yancey, Counting kings: explicit formulas, recurrence relations, and generating functions! Oh my!, Proceedings of the Thirty-Seventh Southeastern International Conference on Combinatorics, Graph Theory and Computing. Congr. Numer. 182 (2006) pp. 41-51.
  7. [CW90] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions, J. Symbolic Computation, 9(3) (1990) pp. 251-280.
  8. [Dud17] H. E. Dudeney, Amusements in Mathematics, Edinburgh: Thomas Nelson & Sons, Limited (1917).
  9. [Knuth] D. Knuth, Non-attacking Kings on a Chessboard, unpublished, https://www-cs-faculty.stanford.edu/~knuth/preprints.html#unpub (1994).
  10. [Kot13] V. Kotěšovec, Non-attacking chess pieces, 6ed, self pub. http://www.kotesovec.cz (2013).
  11. [Kra42] M. Kraitchik, Mathematical Recreations, New York: W. W. Norton & Company Inc. (1942).
  12. [Lar95] M. Larsen, The problem of kings, Elec. J. Combin, 2 (1995), R18.
  13. [Mad79] J. S. Madachy, Mathematical Recreations, New York: Dover (1979).
  14. [Mathematica20] Wolfram Research, Inc., Mathematica, Version 12.1, Champaign, IL (2020).
  15. [OEIS] N. J. A. Sloane, editor, The On-Line Encyclopedia of Integer Sequences, published electronically at https://oeis.org (2020).
  16. [Wat04] J. J. Watkins, Across the Board; The Mathematics of Chessboard Problems, Princeton: Princeton University Press (2004).
  17. [Wil95] H. Wilf, The problem of kings, Elec. J. Combin., 2 (1995), R3.
  18. [YY64] A. Yaglom and I. Yaglom, Challenging Mathematical Problems with Elementary Solutions. Vol I: Combinatorial Analysis and Probability Theory (Trans. James McCawley, Jr.), San Francisco, CA: Holden-Day Inc. (1964, Revised and edited by Basil Gordon).
Language: English
Page range: 41 - 52
Published on: Jun 26, 2025
Published by: Ludus Association
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Tricia Muldoon Brown, published by Ludus Association
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.