Have a personal or library account? Click to login
Diameter-Separation of Chessboard Graphs Cover
By: Doug Chatham  
Open Access
|Dec 2021

References

  1. [BS09] J. Bell, B. Stevens, “A survey of known results and research areas for n-queens‘”, Discrete Math. 309 (1) (2009), 1–31.10.1016/j.disc.2007.12.043
  2. [Cha09] R. D. Chatham, M. Doyle, G. H. Fricke, J. Reitmann, R. D. Skaggs, M. Wolff, “Independence and Domination Separation in Chessboard Graphs”, Journal of Combinatorial Mathematics and Combinatorial Computing 68(2009), 3–17.
  3. [Raz08] M.A. Razzaque, C.S. Hong, M. Abdullah-Al-Wadud, O. Chae (2008) “A Fast Algorithm to Calculate Powers of a Boolean Matrix for Diameter Computation of Random Graphs”. In: S. Nakano, M.S. Rahman (eds) WALCOM: Algorithms and Computation. WALCOM 2008. Lecture Notes in Computer Science, vol 4921. Springer, Berlin, Heidelberg.
  4. [Wat04] J.J. Watkins, “Across the Board: The Mathematics of Chessboard Problems”, Princeton University Press (2004).10.1515/9781400840922
  5. [Wes00] D.B. West. “Introduction to Graph Theory”, 2nd ed., Prentice-Hall, Englewood Cliffs, New Jersey (2000).
Language: English
Page range: 13 - 26
Published on: Dec 7, 2021
Published by: Ludus Association
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Doug Chatham, published by Ludus Association
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.