References
- MALEANU, M. A., Contributions on the use of neural networks in traffic engineering, PhD. Thesis, Technical University of Civil Engineering Bucharest, 2023.
- Transit Capacity and Quality of Service Manual, Third Edition, https://nap.nationalacademies.org/catalog/24766/transit-capacity-and-quality-of-service-manual-third-edition, 26.02.2024.
- Multimodal Level of Service Analysis for Urban Streets, https://nap.nationalacademies.org/catalog/14175/multimodal-level-of-service-analysis-for-urban-streets, 26.02.2024.
- XIN, Y., FU, L., SACCOMANNO, F. F.: Assessing Transit Level of Service along Travel Corridors: Case Study Using the Transit Capacity and Quality of Service Manual, Transportation Research Record, 1927 (2005) 1, pp. 258-267, doi:10.1177/0361198105192700129
- ZUNIGA-GARCIA, N., ROSS, H. W., MACHEMEHL, R. B.: Multimodal Level of Service Methodologies: Evaluation of the Multimodal Performance of Arterial Corridors, Transportation Research Record, 2672 (2018) 15, pp. 142-154, doi:10.1177/0361198118776112
- FU, L., XIN, Y.: A New Performance Index for Evaluating Transit Quality of Service, Journal of Public Transportation, 10 (2007) 3, pp. 47-69, doi:10.5038/2375-0901.10.3.4.
- HENSHER, D.A., STOPHER, P., BULLOCK, P.: Service quality––developing a service quality index in the provision of commercial bus contracts, Transportation Research Part A-policy and Practice, 37 (2003), pp. 499-517, doi: 10.1016/S0965-8564(02)00075-7
- FURTH, P. G., MULLER, T. H. J.: Service Reliability and Hidden Waiting Time: Insights from Automatic Vehicle Location Data, Transportation Research Record, 1955 (2006) 1, pp. 79-87, doi.:10.1177/0361198106195500110
- Urban Street Design Guidelines. Adopted by Charlotte City Council October 22, 2007, https://www.charlottenc.gov/files/sharedassets/city/v/1/growth-and-development/documents/dev-center-fees/manual/usdg-full-document.pdf, 26.02.2024.
- KHOSRAVI, A., MAZLOUMI, E., NAHAVANDI, S., CREIGHTON, D.C., VAN LINT, J.: A genetic algorithm-based method for improving quality of travel time prediction intervals, Transportation Research Part C-emerging Technologies, 19 (2011), pp. 1364-1376, doi:10.1016/J.TRC.2011.04.002.
- JEONG, R., RILETT, R.: Bus arrival time prediction using artificial neural network model, The 7th International IEEE Conference on Intelligent Transportation Systems (IEEE Cat. No.04TH8749) 2004, pp. 988-993, Washington, USA, 3-6 October 2004
- MAZLOUMI, E., ROSE, G., CURRIE, G., SARVI, M.: An Integrated Framework to Predict Bus Travel Time and Its Variability Using Traffic Flow Data, Journal of Intelligent Transportation Systems, 15 (2011), pp. 75 – 90, doi: 10.1080/15472450.2011.570109
- CELIKOGLU.,H.M.: Application of radial basis function and generalized regression neural networks in non-linear utility function specification for travel mode choice modelling, Mathematical and Computer Modelling: An International Journal, 44 (2006) 7-8, pp. 640–658, doi:10.1016/j.mcm.2006.02.002
- XIE, M., LI, X., ZHOU, W., FU, Y.: Forecasting the Short-Term Passenger Flow on High-Speed Railway with Neural Networks, Computational Intelligence and Neuroscience, vol. 2014 (2014,), Article ID 375487, 8 pages, doi: 10.1155/2014/375487
- PEI, Y., ZHOU, K., PENG, T.: Prediction Model of Passenger Waiting Time in High-Speed Rail Hub Based on BP Neural Network, Applied Mechanics and Materials, (2013) 321-324, pp.1903 – 1906, doi: 10.4028/www.scientific.net/AMM.321-324.1903
- Public transport network from Bucharest-Ilfov, https://stbsa.ro/maps1/Generala.pdf, 26.02.2024.