References
- [1]. Q. LIANG, D. ZHANG, G. COPPOLA, Y. WANG, S. WEI, Y. GE: “Multidimensional MEMS/micro sensor for force and moment sensing: a review”, IEEE Sensor J, 14 (2014), pp. 2643-2657.
- [2]. OMAR SABAH AL-DAHIREE 1, MOHAMMAD OSMAN TOKHI, NABIL HASSAN HADI 4, NASSAR RASHEID HMOAD, RAJA ARIFFIN RAJA GHAZILLA, HWA JEN YAP, EMAD ABDULLAH ALBAADANI: “Design and Shape Optimization of Strain Gauge Load Cell for Axial Force Measurement for Test Benches”, Sensors 2022, 22, 7508 https://doi.org/10.3390/s22197508.
- [3]. CAPOBIANCO, G.; BOHUN, N.; GRATTON, M.; SERRA, R.; ZINBI, A.; RIGOLLET, N.: “Both radial and axial load distribution measurement on a V-band clamp by a new load cell design”, Insight-Non-Destr. Test. Cond. Monit. 2022, 64, 432–436.
- [4]. R. NAKKA.: “Strain Gage Load Cell for Thrust Measurement”, available online: http://www.nakka-rocketry.net/strainlc.html (accessed on 9 May 2022).
- [5]. V. FLORESCU, L. RECE, S. MOCANU A. LEGENDI: “Comparative study on the applicability of analytical and experimental methods in the analysis of the safe use of rail tankers carrying petroleum products under pressure”, Romanian journal of transport infrastructure, Volume 7, Issue 1, Page 107-116, DOI 10.2478/rjti-2018-0007, 2018.
- [6]. J.G. FERREIRA, F. BRANCO: “Measurement of Vertical Deformations in Bridges Using an Innovative Elastic Cell System”, Exp. Technol. 2015, 39, 13–20.
- [7]. A.R. TAVAKOLPOUR-SALEH, M.R. SADEGHZADEH: “Design and development of a three-component force/moment sensor for underwater hydrodynamic tests”, Sens. Actuators A Phys. 2014, 216, 84–91.
- [8]. A. TAKEZAWA, S. NISHIWAKI, M. KITAMURA, E.C.N. SILVA: “Topology optimization for designing strain-gauge load cells”, Struct. Multidiscip. Optim. 2010, 42, 387–402.
- [9]. A. TORRENTS, K. AZGIN, S.W. GODFREY, E.S. TOPALLI, T. AKIN, L. VALDEVIT: “MEMS resonant load cells for micro-mechanical test frames: Feasibility study and optimal design”, J. Micromechanics Microeng. 2010, 20.
- [10]. J.O.TEMPLEMAN, B.B. SHEIL, T. SUN: “Multi-axis force sensors: A state-of-theart review”, Sens. Actuators A Phys. 2020, 304.
- [11]. V. FLORESCU, S. MOCANU, L. RECE, R. URSACHE N. GOGA, C.V. MARIAN: “Use of a Novel Resistive Strain Sensor Approach in an Experimental and Theoretical Study Concerning Large Spherical Storage Tank Structure Behavior During Its Operational Life and Pressure Tests”, SENSORS, Volume 20, Issue 2, Article Number 525, 2020.
- [12]. M. ZHANG, B. QIU, M. ZHU: “Novel computation method of reducing illposedness for structural static distributed load identification by optimising strain gauge locations”, Mech. Syst. Signal Process. 2019, 124, 83–110.
- [13]. R. KOLHAPURE, V. SHINDE, V. KAMBLE: “Geometrical optimization of strain gauge force transducer using GRA method”, Measurement 2017, 101, 111–117.
- [14]. H. SUN, X. ZHANG, J. CHEN: “Optimum Design of the Spoke Type Load Cell Based on Fatigue Performance”, J. Fail. Anal. Prev. 2017, 17, 717–723.
- [15]. S. MOCANU, L. RECE, A. BURLACU, C. RONȚESCU, A. MODREA: “Novel Procedures for Sustainable Design in Structural Rehabilitation on Oversized Metal Structures”, METALS, Volume12, Issue7, Article Number1107 2023.
- [16]. R. SEETHALER, S. Z. MANSOUR, M. G. RUPPERT, A. J. FLEMING: “Piezoelectric benders with strain sensing electrodes: Sensor design for position control and force estimation”, Sens. Actuators A Phys. 2022, 335.
- [17]. V. FLORESCU, S. MOCANU, L. RECE, L, D. MOTOUNU, A. GHERGHINA, A. BURLACU: “Design Contributions to the Elaboration of New Modeling Schemes for the Buckling Assessment of Hydraulic Actuators”, METALS, Volume10, Issue9, Article Number1143. 2022.
- [18]. S. NUTHALAPATI, V. SHIRHATTI, V. KEDAMBAIMOOLE, N. V. PANDI, H. TAKAO, M. M. NAYAK, K. RAJANNA: “Highly sensitive flexible strain and temperature sensors using solution processed graphene palladium nanocomposite”, Sens. Actuators A Phys. 2022, 334.
- [19]. T. N. PROJOTH, D. P. M. VICTOR, P. NANTHAKUMAR: “Analysis and prediction of cutting force through lathe tool dynamometer in CNC turning process”, Mater. Today Proc. 2021, 46, 4174–4179.
- [20]. V. FLORESCU, S. MOCANU, A. NEAGU, C. SESCU-GAL: “Research on the parameters influencing the numerical analysis of the fatigue behaviour of a forklift-arm”, Romanian journal of transport infrastructure, Volume10, Issue1, Page1-10, DOI10.2478/rjti-2021-0001, JUL 2021.
- [21]. Z. LOVRENOVIC, M. DOUMIT: “Development and testing of a passive Walking Assist Exoskeleton”, Biocybern. Biomed. Eng. 2019, 39, 992–1004.
- [22]. D. T. BYRNE, H. ESMONDE, D. P. BERRY, F. MCGOVERN, P. CREIGHTON, N. MCHUGH,: “Sheep lameness detection from individual hoof load”, Comput. Electron. Agric. 2019, 158, 241–248.
- [23]. T. GUO, Z. CHEN, S. LU, R. YAO: “Monitoring and analysis of long-term prestress losses in post-tensioned concrete beams”, Measurement 2018, 122, 573–581.
- [24]. A. R. TAVAKOLPOUR-SALEH, A. R. SETOODEH, M. GHOLAMZADEH: “A novel multi-component strain-gauge external balance for wind tunnel tests: Simulation and experiment”, Sens. Actuators A Phys. 2016, 247, 172–186.
- [25]. J. HOŠEK, O. FRANK, V. DIEZ: “Mini-tensile load cell design for diffractometry study of 2d nanostructures”, Rom. Rev. Precis. Mech. Opt. Mechatron. 2014, 45, 89–93. Available online: https://www.proquest.com/scholarly-journals/mini-tensile-load-cell-design-diffractometry/docview/1640469803/se-2.
- [26]. * * * https://www.robofun.ro/senzori/forta/celula-de-sarcina-10kg-bara-dreapta.
- [27]. St. MOCANU: “Scurt comentariu asupra interpretării principiului lui Barre de Saint-Venant în contextul modelării schemei de rezemare prin metoda elementului finit”, Sinteze de Mecanică Teoretică și Aplicată, Volumul 7 (2016), Nr. 1.
- [28]. N. SEIDLE.: “Calibration sketch for HX711 breakout board”, SparkFun Electronics, November 19th, 2014 (public domain).
- [29]. N. SEIDLE: “Basic scale output sketch for HX711 breakout board”, SparkFun Electronics, November 19th, 2014 (public domain).
- [30]. * * * https://github.com/bogde/HX711 (GNU GENERAL PUBLIC LICENSE library).
- [31]. www.cadworks.ro/.
- [32]. www.3dcadvegra.ro/.
- [33]. http://insertmedia.office.microsoft.com.