References
- 1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-33. DOI: 10.1056/NEJMoa2001017.10.1056/NEJMoa2001017
- 2. Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol. 2020;92(4):418-23. DOI: 10.1002/jmv.25681.10.1002/jmv.25681
- 3. Shen K, Yang Y, Wang T, Zhao D, Jiang Y, Jin R, et al. Diagnosis, treatment, and prevention of 2019 novel coronavirus infection in children: experts’ consensus statement. World J Pediatr. 2020;16(3)223-31. DOI: 10.1007/s12519-020-00343-7.10.1007/s12519-020-00343-7
- 4. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565-74. DOI: 10.1016/S0140-6736(20)30251-8.10.1016/S0140-6736(20)30251-8
- 5. Xu X, Chen P, Wang J, Feng J, Zhou H, Li X, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Inf Sci. 2020;63(3):457-60. DOI: 10.1007/s11427-020-1637-5.10.1007/s11427-020-1637-5708904932009228
- 6. To KF, Lo AWI. Exploring the pathogenesis of severe acute respiratory syndrome (SARS): the tissue distribution of the coronavirus (SARS-CoV) and its putative receptor, angiotensin-covertin enzyme 2 (ACE2). J Pathol. 2004;203(3):740-3. DOI: 10.1002/path.1597.10.1002/path.1597716790215221932
- 7. Han Q, Lin Q, Jin S, You L. Coronavirus 2019-nCoV: a brief perspective from the front line. J Infect. 2020;80(4):373-7. DOI: 10.1016/j.jinf.2020.02.010.10.1016/j.jinf.2020.02.010710258132109444
- 8. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol. 2020;94(7):e00127-20. DOI: 10.1128/JVI.00127-20.10.1128/JVI.00127-20708189531996437
- 9. de Groot RJ, Baker SC, Baric RS, Brown CS, Drosten C, Enjuanes L, et al. Middle East Respiratory Syndrome Coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group. J Virol. 2013;87(14):7790-2. DOI: 10.1128/JVI.01244-13.10.1128/JVI.01244-13370017923678167
- 10. Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses. 2012;4(6):1011-33. DOI: 10.3390/v4061011.10.3390/v4061011339735922816037
- 11. Zhang X, Li P, Zheng Q, Hou J. Lactobaccilus acidophilus S-layer protein-mediated inhibition of PEDV-induced apoptosis of Vero cells. Vet Microbiol. 2019;229:159-67. DOI: 10.1016/j.vetmic.2016.01.003.10.1016/j.vetmic.2016.01.00326931384
- 12. Bakkers MJG, Zeng Q, Feitsma LJ, Hulswit RJG, Li Z, Westerbeke A, et al. Coronavirus receptor switch explained from the stereochemistry of protein–carbohydrate interactions and a single mutation. Proc Natl Acad Sci U S A. 2016;113(22):E3111-9. DOI: 10.1073/pnas.151988113.
- 13. Wang H, Yang P, Liu K, Guo F, Zhang Y, Zhang G, et al. SARS coronavirus entry into host cells through a novel clathrin - and caveolae - independent endocytic pathway. Cell Res. 2008;18(2):290-301. DOI: 10.1038/cr.2008.15.10.1038/cr.2008.15709189118227861
- 14. Le Bert N, Tan AT, Kunasegaran K, Tham CYL, Hafezi M, Chia A, et al. SARS-CoV-2 specific T cell immunity in cases of CVID -19 and SARS, and uninfected controls. Nature. 2020;584(7821):457-62. DOI: 10.1038/s41586-020-2550-z.10.1038/s41586-020-2550-z32668444
- 15. Wei X, Li X, Cui J. Evolutionary perspectives on novel coronaviruses identified in pneumonia cases in China. Natl Sci Rev. 2020;7(2):239-42. DOI: 10.1093/nsr/nwaa009.10.1093/nsr/nwaa009710798332288962
- 16. Zhang G, Li B, Yoo D, Qin T, Zhang X, Jia Y, et al. Animal corona-viruses and SARS-CoV-2. Transbound Emerg Dis. 2021;68:1097-110. DOI: 10.1111/tbed.13791.10.1111/tbed.13791746106532799433
- 17. Franklin AB, Bevins SN. Spillover of SARS-CoV-2 into novel wild hosts in North America: A conceptual model for perpetuation of the pathogen. Sci Total Environ. 2020;733:139358. DOI: 10.1016/j.scitotenv.2020.139358.10.1016/j.scitotenv.2020.139358721429232416535
- 18. Grasselli G, Pesenti A, Cecconi M. Critical care utilization for the COVID-19 outbreak in Lombardy, Italy: Early experience and forecast during an emergency response. JAMA. 2020;323(16):1545-6. DOI:10.1001/jama.2020.4031.10.1001/jama.2020.403132167538
- 19. Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, et al. Cardiovascular implications of fatal outcomes of patients with Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):811-8. DOI: 10.1001/jamacardio.2020.1017.10.1001/jamacardio.2020.1017710150632219356
- 20. Li P, Yin Y, Yu Q, Yang Q. Lactobacillus acidophilus S-layer protein-mediated inhibition of Salmonella-inducing apoptosis in Caco-2 cells. Biochem Biophys Res Commun. 2011;409(1):142-7. DOI: 10.1016/j.bbrc.2011.04.131.10.1016/j.bbrc.2011.04.13121557929
- 21. Li W, van Kuppeveld FJM, He Q, Rottier PJM, Bosch BJ. Cellular entry of the porcine epidemic diarrhea virus. Virus Res. 2016;226:117-27. DOI: 10.1016/j.virusres.2016.05.031.10.1016/j.virusres.2016.05.031711453427317167
- 22. Park JE, Jung S, Kim A, Park JE. MERS transmission and risk factors: a systematic review. BMC Public Health. 2018;18(1):574. DOI: 10.1186/s12889-018-5484-8.10.1186/s12889-018-5484-8593077829716568
- 23. Pedersen NC. Virologic and immunologic aspects of feline infectious peritonitis virus infection. Adv Exp Med Biol. 1987;218:529-50. DOI: 10.1007/978-1-4684-1280-2_69.10.1007/978-1-4684-1280-2_692829567
- 24. Regan AD, Whittaker GR. Utilization of DC-SIGN for entry of feline coronaviruses into host cells. J Virol. 2008;82(23):11992-6. DOI: 10.1128/JVI.01094-08.10.1128/JVI.01094-08258369118799586
- 25. Regan AD, Ousterout DG, Whittaker GR. Feline lectin activity is critical for the cellular entry of feline infectious peritonitis virus. J Virol. 2010;84(15):7917-21. DOI: 10.1128/JVI.00964-10.10.1128/JVI.00964-10289760820484511
- 26. Vennema H, Poland A, Foley J, Pedersen NC. Feline infectious peritonitis virus arise by mutation from endemic feline enteric corona-viruses. Virology. 1998;243(1):150-7. DOI: 10.1006/viro.1998-9045.
- 27. Rottier PJM, Nakamura K, Schellen P, Volders H, Haijema BJ. Acquisition of macrophage tropism during the pathogenesis of feline infectious peritonitis is determined by mutation in the feline coronavirus spike protein. J Virol. 2005;79(22):14122-30. DOI: 10.1128/JVI.79.22.14122-14130.2005.10.1128/JVI.79.22.14122-14130.2005128022716254347
- 28. Hungley ST, Gombold, JL, Lavi E, Weiss SR., MHV-A59 fusion mutants are attenuated and display altered hepatotropism. Virology. 1994;200(1):1-10. DOI: 10.1006/viro.1994.1156.10.1006/viro.1994.11568128613
- 29. Ng OW, Chia A, Tan AT, Jadi RS, Leong HN, Bertoletti A, et al. Memory T-cells responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine. 2016;34(17):2008-14. DOI: 10.1016/j.vaccine.2016.02.063.10.1016/j.vaccine.2016.02.063711561126954467
- 30. Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res. 2000;87(5):E1-9. DOI: 10.1161/01.res.87.5.e1.10.1161/01.RES.87.5.e1
- 31. Raj VS, Mou H, Smits SL, Dekkers DHW, Muller MA, Dijkman R, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus. Nature. 2013;495(7440):251-4. DOI: 10.1038/nature12005.10.1038/nature12005709532623486063
- 32. Glass WG, Subbarao K, Murphy B, Murphy PM. Mechanisms of host defense following severe acute respiratory syndrome-coronavirus (SARS-CoV) pulmonary infection of mice. J Immunol. 2004:173(6):4030-9. DOI: 10.4049/jimmunol.173.6.4030.10.4049/jimmunol.173.6.403015356152
- 33. Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis GJ, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631-7. DOI: 10.1002/path.1570.10.1002/path.1570716772015141377
- 34. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin-coverting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:450-4.10.1038/nature02145709501614647384
- 35. Mossel EC, Wang J, Jeffers S, Edeen KE, Wang S, Cosgrove GP, et al. SARS-CoV replicates in primary human alveolar type II cell cultures but not in type I-like cells. Virology. 2008;372(1):127-35. DOI: 10.1016/j.virol.2007.09.045.10.1016/j.virol.2007.09.045231250118022664
- 36. Bertram S, Glowacka I, Muller MA, Lavender H, Gnirss K, Nehlmeier I, et al. Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like pro-tease. J Virol. 2011;85(24):13363-72. DOI: 10.1128/JVI.05300-11.10.1128/JVI.05300-11323318021994442
- 37. Hofmann H, Pohlmann S. Cellular entry of the SARS coronavirus. Trends Microbiol. 2004;12(10):466-72. DOI: 10.1016/j.tim.2004.08.008.10.1016/j.tim.2004.08.008711903115381196
- 38. Grifoni A, Sidney J, Zhang Y, Scheuermann RH, Peters B, Sette A. Sequence homology and bioinformatic approach can predict candidate targets for immune responses to SARS-CoV-2. Cell Host Microbe. 2020;27(4):671-80.e2. DOI: 10.1016/j.chom.2020.03.002.10.1016/j.chom.2020.03.002714269332183941
- 39. Kirchdoerfer RN, Cottrell CA, Wang N, Pallesen J, Yassine HM, Turner HL, et al. Pre-fusion structure of a human coronavirus spike protein. Nature. 2016;531:118-21.10.1038/nature17200486001626935699
- 40. Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA. 2020;323(18):1843-4. DOI: 10.1001/jama.2020.3786.10.1001/jama.2020.3786706652132159775
- 41. Simmons G, Gosalia DN, Rennekamp AJ, Reeves JD, Diamond SL, Bates P. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci U S A. 2005;102(33):11876-81. DOI: 10.1073/pnas.0505577102.10.1073/pnas.0505577102118801516081529
- 42. Samavati L, Uhal BD. ACE2, much more than just a receptor for SARS-COV-2. Front Cell Infect Microbiol. 2020;10:317. DOI: 10.3389/fcimb.2020.00317.10.3389/fcimb.2020.00317729484832582574
- 43. Roca-Ho H, Riera M, Palau V, Pascual J, Soler MJ. Characterization of ACE and ACE2 expression within different organs of the NOD mouse. Int J Mol Sci. 2017;18(3):563. DOI: 10.3390/ijms18030563.10.3390/ijms18030563537257928273875
- 44. Marian AJ. The discovery of the ACE2 gene. Circ Res. 2013;112(10):1307-9. DOI: 10.1161/CIRCRESAHA.113.301271.10.1161/CIRCRESAHA.113.30127123661710
- 45. Sharma AR, Batra G, Kumar M, Mishra A, Singla R, Singh A, et al. BCG as a game-changer to prevent the infection and severity of Covid-19 pandemic? Allergol Immunopathol (Madr). 2020;48(5): 507-17. DOI: 10.1016/j.aller.2020.05.002.10.1016/j.aller.2020.05.002733293432653224
- 46. Jeffers SA, Tussel SM, Gillim-Ros L, Hemmila EM, Achenbach JE, Babcock GJ, et al. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A. 2004;101(44):15748-53. DOI: 10.1073/pnas.0403812101.10.1073/pnas.040381210152483615496474
- 47. Jeffers SA, Hemmila EM, Holmes KV. Human coronavirus 229E can use CD209L (L-SIGN) to enter cells. Adv Exp Med Biol. 2006;581:265-9. DOI: 10.1007/978-0-387-33012-9_44.10.1007/978-0-387-33012-9_44712361117037540
- 48. Han DP, Lohani M, Cho MW. Specific asparagine-linked glycosylation sites are critical for DC-SIGN- and L-SIGN-mediated severe acute respiratory syndrome coronavirus entry. J. Virol. 2007;81(21):12029-39. DOI: 10.1128/JVI.00315-07.10.1128/JVI.00315-07216878717715238
- 49. Malik YS, Sircar S, Bhat S, Sharun K, Dhama K, Dadar M, Tiwari R, et al. Emerging novel coronavirus (2019-nCoV)-current scenario, evolutionary perspective based on genome analysis and recent developments. Vet Q. 2020;40(1):68-76. DOI: 10.1080/01652176.2020.1727993.10.1080/01652176.2020.1727993705494032036774
- 50. Rodriguez-Morales AJ, Bonilla-Aldana DK, Balbin-Ramon GJ, Rabaan AA, Sah R, Paniz-Mondolfi A, et al. History is repeating itself: Probable zoonotic spillover as the cause of the 2019 novel Coronavirus Epidemic. Infez Med. 2020;28(1):3-5.
- 51. Ji W, Wang W, Zhao X, Zai J, Li X. Cross-species transmission of the newly identified coronavirus 2019-nCoV. J Med Virol. 2020;92:433-40. DOI: 10.1002/jmv.25682.10.1002/jmv.25682713808831967321
- 52. Cui J, Li F, Shi Z-L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17(3):181-92. DOI: 10.1038/s41579-018-0118-9.10.1038/s41579-018-0118-9709700630531947
- 53. DeDiego ML, Nieto-Torres JL, Jimenez-Guardeno JM, Regla-Nava JA, Alvarez E, Oliveros JC, et al. Severe acute respiratory syndrome coronavirus envelope protein regulates cell stress response and apoptosis. PloS Pathog. 2011;7(10):e1002315. DOI: 10.1371/journal.ppat.1002315.10.1371/journal.ppat.1002315319762122028656
- 54. Favreau DJ, Meessen-Pinard M, Desforges M, Talbot PJ. Human coronavirus-induced neuronal programmed cell death is cyclophilin d dependent and potentially caspase dispensable. J Virol. 2012;86(1):81-93. DOI: 10.1128/JVI.06062-11.10.1128/JVI.06062-11325591222013052
- 55. Walter J, Heng NCK, Hammes WP, Loach DM, Tannock GW, Hertel C. Identification of Lactobacillus reuteri genes specifically induced in the mouse gastrointestinal tract. Appl Environ Microbiol.2033;69(4):2044-51. DOI: 10.1128/AEM.69.4.2044-2051.2003.10.1128/AEM.69.4.2044-2051.200315480512676681
- 56. Sun Z, Kong J, Hu S, Kong W, Lu W, Liu W. Characterization of a S-layer protein from Lactobacillus crispatus K313 and the domains responsible for binding to cell wall and adherence to collagen. Appl Microbiol Biotechnol. 2013;97(5):1941-52. DOI: 10.1007/s00253-012-4044-x.10.1007/s00253-012-4044-x22526799
- 57. Penders J, Thijs C, Mommers M, Stobberingh EE, Dompeling E, Rejimerink NE, et al. Intestinal lactobacilli and the DC-SIGN gene for their recognition by dendritic cells play a role in the aetiology of allergic manifestations. Microbiology (Reading). 2010;156(Pt 11):3298-305. DOI: 10.1099/mic.0.042069-0.10.1099/mic.0.042069-020829290
- 58. Khoo US, Chan KYK, Chan VSF, Lin CLS. DC-SIGN and L-SIGN: the SIGNs for infection. J Mol Med (Berl). 2008;86(8):861-74. DOI: 10.1007/s00109-008-0350-2.10.1007/s00109-008-0350-2707990618458800
- 59. Alen MMF, Kaptein SJK, De Burghgraeve T, Balzarini J, Neyts J, Schols D. Antiviral activity of carbohydrate-binding agents and the role of DC-SIGN in dengue virus infection. Virology. 2009;387(1):67-75. DOI: 10.1016/j.virol.2009.01.043.10.1016/j.virol.2009.01.04319264337
- 60. Konstantinov SR, Smidt H, de Vos WM, Brujins SCM, Singh SK, Valence F, et al. S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc Natl Acad Sci U S A. 2008;105(49):19474-9. DOI: 10.1073/pnas.0810305105.10.1073/pnas.0810305105259236219047644
- 61. Zhang Y, Xiang X, Lu Q, Zhang L, Ma F, Wang L. Adhesions of extracellular surface-layer associated proteins in Lactobaccilus M5-L and Q8-L. J Dairy Sci. 2016;99(2):1011-8. DOI: 10.3168/jds.2015-10020.10.3168/jds.2015-1002026709174
- 62. Gilbert C, Atlan D, Blanc B, Portailer R, Germond JE, Lapierre L, et al. A new cell surface proteinase: sequencing and analysis of the prtB gene from Lactobacillus delbrueckii subsp. bulgaricus. J Bacteriol. 1996;178(11):3059-65. DOI: 10.1128/jb.178.11.3059-3065.1996.10.1128/jb.178.11.3059-3065.19961780528655480
- 63. Hynonen U, Palva A. Lactobacillus surface layer proteins: structure, function and applications. Appl Microbiol Biotechnol. 2013;97(12):5225-43. DOI: 10.1007/s00253-013-4962-2.10.1007/s00253-013-4962-2366612723677442
- 64. Martinez MG, Acosta MP, Candurra NA, Ruzal SM. S-layer proteins of Lactobacillus acidophilus inhibits JUNV infection. Biochem Biophys Res Commun. 2012;422(4):590-5. DOI: 10.1016/j.bbrc.2012.05.031.10.1016/j.bbrc.2012.05.031712425022595457
- 65. Lee YJ, Lee C. Porcine deltacoronavirus induces caspase-dependent apoptosis through activation of the cytochrome c-mediated intrinsic mitochondrial pathway. Virus Res. 2018;253:112-3. DOI: 10.1016/j.virusres.2018.06.008.10.1016/j.virusres.2018.06.008711486629940190
- 66. Huang MM, Yu HD, Guo LJ, Chen JF, Feng L, Wang YE, et al. Induction of apoptosis in Vero-E6 cells infected with porcine epidemic diarrhea virus. Chin J Prev Vet Med. 2014;36(12):926-9.
- 67. Kim Y, Lee C. Porcine epidemic diarrhea virus induces caspase-independent apoptosis through activation of mitochondrial apoptosis-inducing factor. Virology. 2014;460-461:180-93. DOI: 10.1016/j.virol.2014.04.040.10.1016/j.virol.2014.04.040712772025010284
- 68. Faherty CS, Maurelli AT. Staying alive: bacterial inhibition of apoptosis during infection. Trends Microbiol. 2008;16(4):173-80. DOI: 10.1016/j.tim.2008.02.001.10.1016/j.tim.2008.02.001274694818353648
- 69. Li P, Ye X, Yang Q. Antagonistic activity of Lactobacillus acidophilus ATCC 4356 S-layer protein on Salmonella enterica subsp. enterica serovar Typhimurium in Caco-2 cells. Ann Microbiol. 2012;62:905-9.10.1007/s13213-011-0327-1
- 70. Acosta MP, Ruzal SM, Cordo SM. S-layer proteins from Lactobacillus sp. inhibit bacterial infection by blockage of DC-SIGN cell receptor. Int J Biol Macromol. 2016;92:998-1005. DOI: 10.1016/j.ijbiomac.2016.07.096.10.1016/j.ijbiomac.2016.07.09627498415
- 71. Gupta PK. New disease old vaccine: Is recombinant BCG vaccine an answer for COVID-19? Cell Immunol. 2020;356:104187. DOI: 10.1016/j.cellimm.2020.104187.10.1016/j.cellimm.2020.104187738678032745670
- 72. Wardhana EA, Datau EA, Sultana A, Mandang VVV, Jum E. The efficacy of Bacillus Calmette-Guérin vaccination for the prevention of acute upper respiratory tract infection in elderly. Acta Med Indones. 2011;43(3):185-90.
- 73. Leentjens J, Kox M, Stokman R, Gerretsen J, Diavatopoulos DA, van Crevel R, et al. BCG vaccination enhances the immunogenicity of subsequent influenza vaccination in healthy volunteers: A randomised, placebo-controlled pilot study. J Infect Dis. 2015;212(12):1930-8. DOI: 10.1093/infdis/jiv.332.
- 74. Miller A, Reandelar MJ, Fasciglione K, Roumenova V, Li Y, Otazu GH. Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19: an epidemiological study. medRxiv [Internet]. Available from: https://www.medrxiv.org/content/10.1101/2020.03.24.20042937v2. DOI: http://dx.doi.org/10.1101/2020.03.24.20042937.10.1101/2020.03.24.20042937
- 75. Joya M, Malavika B., Asirvatham ES, Sudarsanam TD, Jeyaseelan L. Is BCG associated with reduced incidence of COVID-19? A meta-regression of global data from 160 countries. Clin Epidemiol Glob Health. 2021;9:202-3. DOI: 10.1016/j,cegh.2020.08.015.
- 76. Maheshwari N, Jain A. Is there a rationale for using Bacillus Calmette-Guerin vaccine in coronavirus infection? Viral Immunol. 2020. DOI: 10.1089/vim.2020.0079. [Online ahead of print]10.1089/vim.2020.007932857679
- 77. Goodridge HS, Ahmed SS, Curtis N, Kollmann TR, Levy O, Netea MG, et al. Harnessing the beneficial heterologous effects of vaccination. Nat Rev Immunol. 2016;16(6):392-400. DOI: 10.1038/nri.2016.43.10.1038/nri.2016.43493128327157064
- 78. Mathurin KS, Martens GW, Kornfeld H, Welsh RM. CD4 T-cell-mediated heterologous immunity between mycobacteria and poxviruses. J Virol. 2009;83(8):3528-39. DOI : 10.1128/JVI.02393-08.10.1128/JVI.02393-08266327219193795
- 79. Vetskova EK, Muhtarova MN, Avramov TI, Stefanova TR, Chalakov IJ, Nikolova MH. Immunomodulatory effects of BCG in patients with recurrent respiratory papillomatosis. Folia Med (Plovdiv). 2013;55(1):49-54. DOI: 10.2478/folmed-2013-0005.10.2478/folmed-2013-000523905487
- 80. Ramesh S. 100-year-old TB vaccine now being tested for Covid-19, India may conduct a trial too. The Print [Internet]. [25 March 2020]. Available from: https://theprint.in/health/100-year-old-tbvaccine-now-being-tested-for-covid-19-india-may-conduct-a-trial-too/387839/.
- 81. Covian C, Fernandez-Fierro A, Retamal-Diaz A, Diaz FE, Vasquez AE, Lay MK, et al. BCG-induced cross-protection band development of trained immunity: implication for vaccine design. Front Immunol. 2019;10:2806. DOI: 10.3389/fimmu.2019.02806.10.3389/fimmu.2019.02806689690231849980
- 82. Arts RJ, Moorlag SJCFM, Novakovic B, Li Y, Wang SY, Oosting M, et al. BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microbe. 2018;23(1):89-100.e5. DOI: 10.1016/j.chom.2017.12.010.10.1016/j.chom.2017.12.01029324233
- 83. Israr M, DeVoti JA, Lam F, Abramson AL, Steinberg BM, Bonagura VR. Altered monocyte and langerhans cell immunity in patients with recurrent respiratory papillomatosis (RRP). Front Immunol. 2020.11:336. DOI: 10.3389/fimmu.2020.00336.10.3389/fimmu.2020.00336707611432210959