References
- 1. Trapeznikov NN, Poddubnaya IV. Handbook of Oncology. Editor Academician of the Russian Academy of Medical Sciences. Moscow: Kappa; 1996.
- 2. Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, et al. Oncogenic signaling pathways in the cancer genome atlas. Cell. 2018;173(2):32137.e10. DOI: 10.1016/j.cell.2018.03.035.10.1016/j.cell.2018.03.035607035329625050
- 3. Pollard T, Earnshaw W, Lippincott-Schwartz J, Johnson G. Cell biology. 3rd edition. Philadelphia, PA: Elsevier; 2017.
- 4. Ezkurdia I, Juan D, Rodriguez J M, Frankish A, Diekhans M, Harrow J, et al. Multiple evidence strands suggest that there may be as few as 19,000 human protein-coding genes. Hum Mol Genet. 2014;23(22):5866-78. DOI: 10.1093/hmg/ddu309.10.1093/hmg/ddu309420476824939910
- 5. Malarkey DE, Hoenerhoff M, Maronpot RR. Carcinogenesis: mechanisms and manifestations. In: Bolon B, Haschek W, Rousseaux C, Ochoa R, Wallig M. Haschek and Rousseaux’s handbook of toxicologic pathology. 3rd Edition. Academic Press; 2013, p.107-46.10.1016/B978-0-12-415759-0.00005-4
- 6. Becnel LB, Ochsner SA, Darlington YF, McOwiti A, Kankanamge WH, Dehart M, et al. Discovering relationships between nuclear receptor signaling pathways, genes, and tissues in Transcriptomine. Sci Signal. 2017;10(476):eaah6275. DOI: 10.1126/scisignal.aah6275.10.1126/scisignal.aah627528442630
- 7. Ochsner SA, Abraham D, Martin K, Ding W, McOwiti A, Kankanamge W, et al. The Signaling Pathways Project, an integrated ‘omics knowledgebase for mammalian cellular signaling pathways. Sci Data. 2019;6(1):252. DOI: 10.1038/s41597-019-0193-4.10.1038/s41597-019-0193-4682342831672983
- 8. Pecorino L. Molecular biology of cancer: mechanisms, targets, and therapeutics. 3rd edition. Oxford University Press; 2012.
- 9. Yoo M, Hatfield DL. The cancer stem cell theory: Is it correct? Mol Cells. 2008;26(5):514-6.
- 10. Reinhardt HC, Yaffe MB. Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2. Curr Opin Cell Biol. 2009;21(2):245-55. DOI: 10.1016/j.ceb.2009.01.018.10.1016/j.ceb.2009.01.018269968719230643
- 11. Nigg EA. Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol. 2001;2:21-32.10.1038/3504809611413462
- 12. Lim S, Kaldis P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development. 2013;140(15):3079-93. DOI: 10.1242/dev.091744.10.1242/dev.09174423861057
- 13. Gopinathan L, Ratnacaram CK, Kaldis P. Established and novel Cdk/cyclin complexes regulating the cell cycle and development. Results Probl Cell Differ. 2011;53:365-89. DOI: 10.1007/978-3-642-19065-0_16.10.1007/978-3-642-19065-0_1621630153
- 14. Kato S, Schwaederle M, Daniels GA, Piccioni D, Kesari S, Bazhenova L, et al. Cyclin-dependent kinase pathway aberrations in diverse malignancies: clinical and molecular characteristics. Cell Cycle. 2015;14(8):1252-9. DOI: 10.1080/15384101.2015.1014149.10.1080/15384101.2015.1014149461486725695927
- 15. Foster SS, De S, Johnson LK, Petrini JH, Stracker TH. Cell cycle- and DNA repair pathway-specific effects of apoptosis on tumor suppression. Proc Natl Acad Sci U S A. 2012;109(25):9953-8. DOI: 10.1073/pnas.1120476109.10.1073/pnas.1120476109
- 16. Mazouzi A, Velimezi G, Loizou JI. DNA replication stress: causes, resolution and disease. Exp Cell Res. 2014;329(1):85-93. DOI: 10.1016/j.yexcr.2014.09.030.10.1016/j.yexcr.2014.09.030
- 17. Visconti R, Della Monica R, Grieco D. Cell cycle checkpoint in cancer: a therapeutically targetable double-edged sword. J Exp Clin Cancer Res. 2016;35(1):153. DOI: 10.1186/s13046-016-0433-9.10.1186/s13046-016-0433-9
- 18. Rubin SM. Deciphering the retinoblastoma protein phosphorylation code. Trends Biochem Sci. 2013;38(1):12-9. DOI: 10.1016/j.tibs.2012.10.007.10.1016/j.tibs.2012.10.007
- 19. DeCaprio JA, Ludlow JW, Lynch D, Furukawa Y, Griffin J, Piwnica-Worms H, et al. The product of the retinoblastoma susceptibility gene has properties of a cell cycle regulatory element. Cell. 1989;58(6):1085-95. DOI: 10.1016/0092-8674(89)90507-2.10.1016/0092-8674(89)90507-2
- 20. Pardal R, Molofsky AV, He S, Morrison SJ. Stem cell self-renewal and cancer cell proliferation are regulated by common networks that balance the activation of proto-oncogenes and tumor suppressors. Cold Spring Harb Symp Quant Biol. 2005;70:177-85. DOI: 10.1101/sqb.2005.70.057.10.1101/sqb.2005.70.05716869752
- 21. Mesplede T, Gagnon D, Bergeron-Labrecque F, Azar I, Senechal H, Coutlee F, et al. p53 degradation activity, expression, and subcellular localization of E6 proteins from 29 human papillomavirus genotypes. J Virol. 2012;86(1):94-107. DOI: 10.1128/JVI.00751-11.10.1128/JVI.00751-11325587522013048
- 22. El-Deiry WS. p21(WAF1) mediates cell-cycle inhibition, relevant to cancer suppression and therapy. Cancer Res. 2016;76(18):5189-91. DOI: 10.1158/0008-5472.CAN-16-2055.10.1158/0008-5472.CAN-16-2055502810827635040
- 23. Otto T, Sicinski P. Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer. 2017;17(2):93-115. DOI: 10.1038/nrc.2016.138.10.1038/nrc.2016.138534593328127048
- 24. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298(5600):191234. DOI: 10.1126/science.1075762.10.1126/science.107576212471243
- 25. Wallace MD, Southard TL, Schimenti KJ, Schimenti JC. Role of DNA damage response pathways in preventing carcinogenesis caused by intrinsic replication stress. Oncogene. 2014;33(28):3688-95. DOI: 10.1038/onc.2013.339.10.1038/onc.2013.339393600423975433
- 26. Polatova DS. 413P - The state of molecular biological markers in osteosarcoma. Ann Oncol. 2019;30(Suppl 9):ix138.10.1093/annonc/mdz433.010
- 27. Malik-Rachline G, Hacohen-Lev-Ran A, Seger R. Nuclear ERK: Mechanism of translocation, substrates, and role in cancer. Int J Mol Sci. 2019;20(5):1194. DOI: 10.3390/ijms20051194.10.3390/ijms20051194642906030857244
- 28. Grimaldi AM, Simeone E, Festino L, Vanella V, Strudel M, Ascierto PA. MEK Inhibitors in the treatment of metastatic melanoma and solid tumors. Am J Clin Dermatol. 2017;18(6):745-54. DOI: 10.1007/s40257-017-0292-y.10.1007/s40257-017-0292-y28537004
- 29. Bustelo XR. RHO GTPases in cancer: known facts, open questions, and therapeutic challenges. Biochem Soc Trans. 2018;46(3):741-60. DOI: 10.1042/BST20170531.10.1042/BST2017053129871878
- 30. Kidger AM, Sipthorp J, Cook SJ. ERK1/2 inhibitors: New weapons to inhibit the RAS-regulated RAF-MEK1/2-ERK1/2 pathway. Pharmacol Ther. 2018;187:45-60. DOI: 10.1016/j.pharmathera.2018.02.007.
- 31. Bandaru P, Kondo Y, Kuriyan J. The interdependent activation of sonofsevenless and Ras. Cold Spring Harb Perspect Med. 2019;9(2):a031534. DOI: 10.1101/cshperspect.a031534.10.1101/cshperspect.a031534636087029610148
- 32. Buffet C, Hecale-Perlemoine K, Bricaire L, Dumont F, Baudry C, Tissier F, et al. DUSP5 and DUSP6, two ERK specific phosphatases, are markers of a higher MAPK signaling activation in BRAF mutated thyroid cancers. PLoS ONE. 2017;12(9):e0184861. DOI: 10.1371/journal.pone.0184861.eCollection 2017.
- 33. Cheng Y. Tian H. Current development status of MEK inhibitors. Molecules. 2017;22(10):1551. DOI: 10.3390/molecules22101551.10.3390/molecules22101551615181328954413
- 34. Eblen ST. Extracellular regulated kinases: Signaling from Ras to ERK substrates to control biological outcomes. Adv Cancer Res. 2018;138:99-142. DOI: 10.1016/bs.acr.2018.02.004.10.1016/bs.acr.2018.02.004600798229551131
- 35. Frodyma D, Neilsen B, Costanzo-Garvey D, Fisher K, Lewis R. Coordinating ERK signaling via the molecular scaffold Kinase Suppressor of Ras. F1000Res. 2017;6:1621. DOI: 10.12688/f1000research.11895. eCollection 2017.
- 36. García-Gómez R, Bustelo XR, Crespo P. Protein-protein interactions: Emerging oncotargets in the RAS-ERK pathway. Trends Cancer. 2018;4(9):61633. DOI: 10.1016/j,trecan.2018.07.002.
- 37. Geenen JJJ, Schellens JHM. Molecular pathways: targeting the protein kinase Wee1 in cancer. Clin Cancer Res. 2017;23(16):4540–4. DOI: 10.1158/1078-0432.CCR-17-0520.10.1158/1078-0432.CCR-17-052028442503
- 38. Lavoie H, Therrien M. Regulation of RAF protein kinases in ERK signalling. Nat Rev Mol Cell Biol. 2015;16(5):281-98. DOI: 10.1038/nrm3979.10.1038/nrm397925907612
- 39. Lawrence MC, Jivan A, Shao C, Duan L, Goad D, Zaganjor E, et al. The roles of MAPKs in disease. Cell Res. 2008;18(4):43642. DOI: 10.1038/cr.2008.37.10.1038/cr.2008.37
- 40. Dohlman HG, Campbell SL. Regulation of large and small G proteins by ubiquitination. J Biol Chem. 2019;294(49):1861323. DOI: 10.1074/jbc.REV119.011068.10.1074/jbc.REV119.011068
- 41. Dummer R, Schadendorf D, Ascierto PA, Arance A, Dutriaux C, Di Giacomo AM, et al. Binimetinib versus dacarbazine in patients with advanced NRAS-mutant melanoma (NEMO): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2017;18(4):435-45. DOI: 10.1016/S1470-2045(17)30180-8.10.1016/S1470-2045(17)30180-8
- 42. Herrero A, Pinto A, Colon-Bolea P, Casar B, Jones M, Agudo-Ibanez L, et al. Small molecule inhibition of ERK dimerization prevents tumorigenesis by RAS-ERK pathway oncogenes. Cancer Cell. 2015;28(2):170-82. DOI: 10.1016/j.ccell.2015.07.001.10.1016/j.ccell.2015.07.00126267534
- 43. Simanshu DK, Nissley DV, McCormick F. RAS proteins and their regulators in human disease. Cell. 2017;170(1):1733. DOI: 10.1016/j.cell.2017.06.009.10.1016/j.cell.2017.06.009555561028666118
- 44. Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y, Hu LL. ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med. 2020;19(3):1997-2007. DOI: 10.3892/etm.2020.8454.10.3892/etm.2020.8454702716332104259
- 45. Khotskaya YB, Holla VR, Farago AF, Mills Shaw KR, Meric-Bernstam F, Hong DS. Targeting TRK family proteins in cancer. Pharmacol Ther. 2017;173:5866. DOI: 10.1016/j.pharmthera.2017.02.006.10.1016/j.pharmthera.2017.02.00628174090
- 46. Sanchez JN, Wang T, Cohen MS. BRAF and MEK inhibitors: Use and resistance in BRAFmutated cancers. Drugs. 2018;78(5):54966. DOI: 10.1007/s40265-018-0884-8.10.1007/s40265-018-0884-8608061629488071
- 47. Plotnikov A, Zehorai E, Procaccia S, Seger R. The MAPK cascades: Signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta Mol Cell Res. 2011;1813(9):161933. DOI: 10.1016/j.bbamcr.2010.12.012.10.1016/j.bbamcr.2010.12.01221167873
- 48. Roskoski R Jr. ERK1/2 MAP kinases: Structure, function, and regulation. Pharmacol Res. 2012;66(2):10543. DOI: 10.1016/j.phrs.2012.04.005.10.1016/j.phrs.2012.04.00522569528
- 49. Roskoski R Jr. Targeting ERK1/2 proteinserine/threonine kinases in human cancers. Pharmacol Res. 2019;142:15168. DOI: 10.1016/j.phrs.2019.01.039.10.1016/j.phrs.2019.01.03930794926
- 50. Wainstein E, Seger R. The dynamic subcellular localization of ERK: mechanisms of translocation and role in various organelles. Curr Opin Cell Biol. 2016;39:1520. DOI: 10.1016/j.ceb.2016.01.007.10.1016/j.ceb.2016.01.00726827288
- 51. Cassier E, Gallay N, Bourquard T, Claeysen S, Bockaert J, Crepieux P, et al. Phosphorylation of β-arrestin2 at Thr383 by MEK underlies β-arrestin-dependent activation of Erk1/2 by GPCRs. Elife. 2017;6:e23777. DOI: 10.7554/eLife.23777.10.7554/eLife.23777532562128169830
- 52. Muñoz-Maldonado C, Zimmer Y, Medová M. A comparative analysis of individual RAS mutations in cancer biology. Front Oncol. 2019;9:1088. DOI: 10.3389/fonc.2019.01088. eCollection 2019.10.3389/fonc.2019.01088681320031681616
- 53. Ma Y, Xu Y, Li L. SPARCL1 suppresses the proliferation and migration of human ovarian cancer cells via the MEK/ERK signaling. Exp Ther Med. 2018;16(4):3195-201. DOI: 10.3892/etm.2018.6575.10.3892/etm.2018.6575614384030233672
- 54. Mahapatra DK, Asati V, Bharti SK. MEK inhibitors in oncology: a patent review (2015–Present). Expert Opin Ther Pat. 2017;27(8):887-906. DOI: 10.1080/13543776.2017.1339688.10.1080/13543776.2017.133968828594589
- 55. Rukhlenko OS, Khorsand F, Krstic A, Rozanc J, Alexopoulos LG, Rauch N, et al. Dissecting RAF inhibitor resistance by structurebased modeling reveals ways to overcome oncogenic RAS signaling. Cell Syst. 2018;7(2):161179.e14. DOI: 10.1016/j.cels.2018.06.002.10.1016/j.cels.2018.06.002614954530007540
- 56. Holderfield M, Deuker MM, McCormick F, McMahon M. Targeting RAF kinases for cancer therapy: BRAFmutated melanoma and beyond. Nat Rev Cancer. 2014;14(7):45567. DOI: 10.1038/nrc3760.10.1038/nrc3760425023024957944
- 57. Vandamme D, Herrero A, AlMulla F, Kolch W. Regulation of the MAPK pathway by raf kinase inhibitory protein. Crit Rev Oncog. 2014;19(6):40515. DOI: 10.1615/critrevoncog.2014011922.10.1615/CritRevOncog.2014011922
- 58. Colombino M, Capone M, Lissia A, Cossu A, Rubino C, De Giorgi V, et al. BRAF/NRAS mutation frequencies among primary tumors and metastases in patients with melanoma. J Clin Oncol. 2012;30(20):25229. DOI: 10.1200/JCO.2011.41.2452.10.1200/JCO.2011.41.245222614978
- 59. Dankner M, Rose AAN, Rajkumar S, Siegel PM, Watson IR. Classifying BRAF alterations in cancer: new rational therapeutic strategies for actionable mutations. Oncogene. 2018;37(24):3183-199. DOI: 10.1038/s41388-018-0171-x.10.1038/s41388-018-0171-x29540830
- 60. Sun W, Kesavan K, Schaefer BC, Garrington TP, Ware M, Johnson NL, et al. MEKK2 associates with the adapter protein Lad/RIBP and regulates the MEK5BMK1/ERK5 pathway. J Biol Chem. 2001;276(7):5093100. DOI: 10.1074/jbc.M003719200.10.1074/jbc.M00371920011073940
- 61. Terrell EM, Morrison DK. Rasmediated activation of the Raf family kinases. Cold Spring Harb Perspect Med. 2019;9(1):a033746. DOI: 10.1101/cshperspect.a033746.10.1101/cshperspect.a033746631114929358316
- 62. Jones JC, Renfro LA, Al-Shamsi HO, Schrock AB, Rankin A, Zhang BY, et al. NonV600 BRAF mutations define a clinically distinct molecular subtype of metastatic colorectal cancer. J Clin Oncol. 2017;35(23):262430. DOI: 10.1200/JCO.2016.71.4394.10.1200/JCO.2016.71.4394554945428486044
- 63. Seternes OM, Kidger AM, Keyse SM. Dual-specificity MAP kinase phosphatases in health and disease. Biochim Biophys Acta Mol Cell Res. 2019;1866(1):12443. DOI: 10.1016/j.bbamcr.2018.09.002.10.1016/j.bbamcr.2018.09.002622738030401534
- 64. Wang C, Chen Z, Nie L, Tang M, Feng X, Su D, et al. Extracellular signal-regulated kinases associate with and phosphorylate DHPS to promote cell proliferation. Oncogenesis. 2020;9(9):85. DOI: 10.1038/s41389-020-00271-1.10.1038/s41389-020-00271-1752227832989218
- 65. Zhou B, Der CJ, Cox AD. The role of wild type RAS isoforms in cancer. Semin Cell Dev Biol. 2016;58:609. DOI: 10.1016/j.semcdb.2016.07.012.10.1016/j.semcdb.2016.07.012502830327422332
- 66. Lu P, Chen J, Yan L, Yang L, Zhang L, Dai J, et al. RasGRF2 promotes migration and invasion of colorectal cancer cells by modulating expression of MMP9 through Src/Akt/NF-kappaB pathway. Cancer Biol Ther. 2018;20(4):435-43. DOI: 10.1080/15384047.2018.1529117.10.1080/15384047.2018.1529117642250330359168
- 67. Krishnamoorthy GP, Davidson NR, Leach SD, Zhao Z, Lowe SW, Lee G, et al. EIF1AX and RAS mutations cooperate to drive thyroid tumorigenesis through ATF4 and c-MYC. Cancer Discovery. 2019;9(2):264-81. DOI: 10.1158/2159-8290.CD-18-0606.10.1158/2159-8290.CD-18-0606637345130305285
- 68. Lavoie H, Sahmi M, Maisonneuve P, Marullo SA, Thevakumaran N, Jin T, et al. MEK drives BRAF activation through allosteric control of KSR proteins. Nature. 2018;554:549-53.10.1038/nature25478643312029433126
- 69. Song M, Finley SD. Mechanistic insight into activation of MAPK signaling by pro-angiogenic factors. BMC Syst Biol. 2018;12:145. DOI: 10.1186/s12918-018-0668-5.10.1186/s12918-018-0668-5
- 70. Vladimirova LY. The use of MEK inhibitors in oncology: results and prospects. Success of Modern Natural Science. 2015;3:18-30.
- 71. Rubinfeld H, Seger R. The ERK cascade: a prototype of MAPK signaling. Mol Biotechnol. 2005;31(2):15174. DOI: 10.1385/MB:31:2:151.10.1385/MB:31:2:151
- 72. Tang Q, Wu J, Zheng F, Hann SS, Chen YQ. Emodin increases expression of insulinlike growth factor binding protein 1 through activation of MEK/ERK/AMPKα and interaction of PPARγ and Sp1 in lung cancer. Cell Physiol Biochem. 2017;41(1):33957. DOI: 10.1159/000456281.10.1159/00045628128214826
- 73. Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, et al. The genomic landscapes of human breast and colorectal cancers. Science. 2007;318(5853):1108-13. DOI: 10.1126/science.1145720.10.1126/science.114572017932254
- 74. Yang S, Liu G. Targeting the Ras/Raf/MEK/ERK pathway in hepatocellular carcinoma. Oncol Lett. 2017;13(3):10417. DOI: 10.3892/ol.2017.5557.10.3892/ol.2017.5557540324428454211
- 75. Mandal R, Becker S, Strebhardt K. Stamping out RAF and MEK1/2 to inhibit the ERK1/2 pathway: an emerging threat to anticancer therapy. Oncogene. 2016;35(20):2547-61. DOI: 10.1038/onc.2015.329.10.1038/onc.2015.32926364606
- 76. Gialeli C, Theocharis AD, Karamanos NK. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 2011;278(1):16-27. DOI: 10.1111/j.1742-4658.2010.07919.x10.1111/j.1742-4658.2010.07919.x21087457
- 77. Braicu C, Buse M, Busuioc C, Drula R, Gulei D, Raduly L, et al. A comprehensive review on MAPK: A promising therapeutic target in cancer. Cancers (Basel). 2019;11(10):1618. DOI: 10.3390/cancers11101618.10.3390/cancers11101618682704731652660
- 78. Caunt CJ, Sale MJ, Smith PD, Cook SJ. MEK1 and MEK2 inhibitors and cancer therapy: the long and winding road. Nat Rev Cancer. 2015;15(10):577-92. DOI: 10.1038/nrc4000.10.1038/nrc400026399658
- 79. Krishna Priya S, Nagare RP, Sneha VS, Sidhanth C, Bindhya S, Manasa P, Ganesan TS. Tumour angiogenesis-Origin of blood vessels. Int J Cancer. 2016;139(4):729-35. DOI: 10.1002/ijc.30067.10.1002/ijc.3006726934471
- 80. Bian CX, Shi Z, Meng Q, Jiang Y, Liu LZ, Jiang BH. P70S6K 1 regulation of angiogenesis through VEGF and HIF-1alpha expression. Biochem Biophys Res Commun. 2010;398(3):395-9. DOI: 10.1016/j.bbrc.2010.06.080.10.1016/j.bbrc.2010.06.080292806120599538