Have a personal or library account? Click to login
Cancer - dysregulation of the cell cycle and transduction of cascade signals Cover

Cancer - dysregulation of the cell cycle and transduction of cascade signals

Open Access
|Jul 2021

References

  1. 1. Trapeznikov NN, Poddubnaya IV. Handbook of Oncology. Editor Academician of the Russian Academy of Medical Sciences. Moscow: Kappa; 1996.
  2. 2. Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, et al. Oncogenic signaling pathways in the cancer genome atlas. Cell. 2018;173(2):32137.e10. DOI: 10.1016/j.cell.2018.03.035.10.1016/j.cell.2018.03.035607035329625050
  3. 3. Pollard T, Earnshaw W, Lippincott-Schwartz J, Johnson G. Cell biology. 3rd edition. Philadelphia, PA: Elsevier; 2017.
  4. 4. Ezkurdia I, Juan D, Rodriguez J M, Frankish A, Diekhans M, Harrow J, et al. Multiple evidence strands suggest that there may be as few as 19,000 human protein-coding genes. Hum Mol Genet. 2014;23(22):5866-78. DOI: 10.1093/hmg/ddu309.10.1093/hmg/ddu309420476824939910
  5. 5. Malarkey DE, Hoenerhoff M, Maronpot RR. Carcinogenesis: mechanisms and manifestations. In: Bolon B, Haschek W, Rousseaux C, Ochoa R, Wallig M. Haschek and Rousseaux’s handbook of toxicologic pathology. 3rd Edition. Academic Press; 2013, p.107-46.10.1016/B978-0-12-415759-0.00005-4
  6. 6. Becnel LB, Ochsner SA, Darlington YF, McOwiti A, Kankanamge WH, Dehart M, et al. Discovering relationships between nuclear receptor signaling pathways, genes, and tissues in Transcriptomine. Sci Signal. 2017;10(476):eaah6275. DOI: 10.1126/scisignal.aah6275.10.1126/scisignal.aah627528442630
  7. 7. Ochsner SA, Abraham D, Martin K, Ding W, McOwiti A, Kankanamge W, et al. The Signaling Pathways Project, an integrated ‘omics knowledgebase for mammalian cellular signaling pathways. Sci Data. 2019;6(1):252. DOI: 10.1038/s41597-019-0193-4.10.1038/s41597-019-0193-4682342831672983
  8. 8. Pecorino L. Molecular biology of cancer: mechanisms, targets, and therapeutics. 3rd edition. Oxford University Press; 2012.
  9. 9. Yoo M, Hatfield DL. The cancer stem cell theory: Is it correct? Mol Cells. 2008;26(5):514-6.
  10. 10. Reinhardt HC, Yaffe MB. Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2. Curr Opin Cell Biol. 2009;21(2):245-55. DOI: 10.1016/j.ceb.2009.01.018.10.1016/j.ceb.2009.01.018269968719230643
  11. 11. Nigg EA. Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol. 2001;2:21-32.10.1038/3504809611413462
  12. 12. Lim S, Kaldis P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development. 2013;140(15):3079-93. DOI: 10.1242/dev.091744.10.1242/dev.09174423861057
  13. 13. Gopinathan L, Ratnacaram CK, Kaldis P. Established and novel Cdk/cyclin complexes regulating the cell cycle and development. Results Probl Cell Differ. 2011;53:365-89. DOI: 10.1007/978-3-642-19065-0_16.10.1007/978-3-642-19065-0_1621630153
  14. 14. Kato S, Schwaederle M, Daniels GA, Piccioni D, Kesari S, Bazhenova L, et al. Cyclin-dependent kinase pathway aberrations in diverse malignancies: clinical and molecular characteristics. Cell Cycle. 2015;14(8):1252-9. DOI: 10.1080/15384101.2015.1014149.10.1080/15384101.2015.1014149461486725695927
  15. 15. Foster SS, De S, Johnson LK, Petrini JH, Stracker TH. Cell cycle- and DNA repair pathway-specific effects of apoptosis on tumor suppression. Proc Natl Acad Sci U S A. 2012;109(25):9953-8. DOI: 10.1073/pnas.1120476109.10.1073/pnas.1120476109
  16. 16. Mazouzi A, Velimezi G, Loizou JI. DNA replication stress: causes, resolution and disease. Exp Cell Res. 2014;329(1):85-93. DOI: 10.1016/j.yexcr.2014.09.030.10.1016/j.yexcr.2014.09.030
  17. 17. Visconti R, Della Monica R, Grieco D. Cell cycle checkpoint in cancer: a therapeutically targetable double-edged sword. J Exp Clin Cancer Res. 2016;35(1):153. DOI: 10.1186/s13046-016-0433-9.10.1186/s13046-016-0433-9
  18. 18. Rubin SM. Deciphering the retinoblastoma protein phosphorylation code. Trends Biochem Sci. 2013;38(1):12-9. DOI: 10.1016/j.tibs.2012.10.007.10.1016/j.tibs.2012.10.007
  19. 19. DeCaprio JA, Ludlow JW, Lynch D, Furukawa Y, Griffin J, Piwnica-Worms H, et al. The product of the retinoblastoma susceptibility gene has properties of a cell cycle regulatory element. Cell. 1989;58(6):1085-95. DOI: 10.1016/0092-8674(89)90507-2.10.1016/0092-8674(89)90507-2
  20. 20. Pardal R, Molofsky AV, He S, Morrison SJ. Stem cell self-renewal and cancer cell proliferation are regulated by common networks that balance the activation of proto-oncogenes and tumor suppressors. Cold Spring Harb Symp Quant Biol. 2005;70:177-85. DOI: 10.1101/sqb.2005.70.057.10.1101/sqb.2005.70.05716869752
  21. 21. Mesplede T, Gagnon D, Bergeron-Labrecque F, Azar I, Senechal H, Coutlee F, et al. p53 degradation activity, expression, and subcellular localization of E6 proteins from 29 human papillomavirus genotypes. J Virol. 2012;86(1):94-107. DOI: 10.1128/JVI.00751-11.10.1128/JVI.00751-11325587522013048
  22. 22. El-Deiry WS. p21(WAF1) mediates cell-cycle inhibition, relevant to cancer suppression and therapy. Cancer Res. 2016;76(18):5189-91. DOI: 10.1158/0008-5472.CAN-16-2055.10.1158/0008-5472.CAN-16-2055502810827635040
  23. 23. Otto T, Sicinski P. Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer. 2017;17(2):93-115. DOI: 10.1038/nrc.2016.138.10.1038/nrc.2016.138534593328127048
  24. 24. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298(5600):191234. DOI: 10.1126/science.1075762.10.1126/science.107576212471243
  25. 25. Wallace MD, Southard TL, Schimenti KJ, Schimenti JC. Role of DNA damage response pathways in preventing carcinogenesis caused by intrinsic replication stress. Oncogene. 2014;33(28):3688-95. DOI: 10.1038/onc.2013.339.10.1038/onc.2013.339393600423975433
  26. 26. Polatova DS. 413P - The state of molecular biological markers in osteosarcoma. Ann Oncol. 2019;30(Suppl 9):ix138.10.1093/annonc/mdz433.010
  27. 27. Malik-Rachline G, Hacohen-Lev-Ran A, Seger R. Nuclear ERK: Mechanism of translocation, substrates, and role in cancer. Int J Mol Sci. 2019;20(5):1194. DOI: 10.3390/ijms20051194.10.3390/ijms20051194642906030857244
  28. 28. Grimaldi AM, Simeone E, Festino L, Vanella V, Strudel M, Ascierto PA. MEK Inhibitors in the treatment of metastatic melanoma and solid tumors. Am J Clin Dermatol. 2017;18(6):745-54. DOI: 10.1007/s40257-017-0292-y.10.1007/s40257-017-0292-y28537004
  29. 29. Bustelo XR. RHO GTPases in cancer: known facts, open questions, and therapeutic challenges. Biochem Soc Trans. 2018;46(3):741-60. DOI: 10.1042/BST20170531.10.1042/BST2017053129871878
  30. 30. Kidger AM, Sipthorp J, Cook SJ. ERK1/2 inhibitors: New weapons to inhibit the RAS-regulated RAF-MEK1/2-ERK1/2 pathway. Pharmacol Ther. 2018;187:45-60. DOI: 10.1016/j.pharmathera.2018.02.007.
  31. 31. Bandaru P, Kondo Y, Kuriyan J. The interdependent activation of sonofsevenless and Ras. Cold Spring Harb Perspect Med. 2019;9(2):a031534. DOI: 10.1101/cshperspect.a031534.10.1101/cshperspect.a031534636087029610148
  32. 32. Buffet C, Hecale-Perlemoine K, Bricaire L, Dumont F, Baudry C, Tissier F, et al. DUSP5 and DUSP6, two ERK specific phosphatases, are markers of a higher MAPK signaling activation in BRAF mutated thyroid cancers. PLoS ONE. 2017;12(9):e0184861. DOI: 10.1371/journal.pone.0184861.eCollection 2017.
  33. 33. Cheng Y. Tian H. Current development status of MEK inhibitors. Molecules. 2017;22(10):1551. DOI: 10.3390/molecules22101551.10.3390/molecules22101551615181328954413
  34. 34. Eblen ST. Extracellular regulated kinases: Signaling from Ras to ERK substrates to control biological outcomes. Adv Cancer Res. 2018;138:99-142. DOI: 10.1016/bs.acr.2018.02.004.10.1016/bs.acr.2018.02.004600798229551131
  35. 35. Frodyma D, Neilsen B, Costanzo-Garvey D, Fisher K, Lewis R. Coordinating ERK signaling via the molecular scaffold Kinase Suppressor of Ras. F1000Res. 2017;6:1621. DOI: 10.12688/f1000research.11895. eCollection 2017.
  36. 36. García-Gómez R, Bustelo XR, Crespo P. Protein-protein interactions: Emerging oncotargets in the RAS-ERK pathway. Trends Cancer. 2018;4(9):61633. DOI: 10.1016/j,trecan.2018.07.002.
  37. 37. Geenen JJJ, Schellens JHM. Molecular pathways: targeting the protein kinase Wee1 in cancer. Clin Cancer Res. 2017;23(16):4540–4. DOI: 10.1158/1078-0432.CCR-17-0520.10.1158/1078-0432.CCR-17-052028442503
  38. 38. Lavoie H, Therrien M. Regulation of RAF protein kinases in ERK signalling. Nat Rev Mol Cell Biol. 2015;16(5):281-98. DOI: 10.1038/nrm3979.10.1038/nrm397925907612
  39. 39. Lawrence MC, Jivan A, Shao C, Duan L, Goad D, Zaganjor E, et al. The roles of MAPKs in disease. Cell Res. 2008;18(4):43642. DOI: 10.1038/cr.2008.37.10.1038/cr.2008.37
  40. 40. Dohlman HG, Campbell SL. Regulation of large and small G proteins by ubiquitination. J Biol Chem. 2019;294(49):1861323. DOI: 10.1074/jbc.REV119.011068.10.1074/jbc.REV119.011068
  41. 41. Dummer R, Schadendorf D, Ascierto PA, Arance A, Dutriaux C, Di Giacomo AM, et al. Binimetinib versus dacarbazine in patients with advanced NRAS-mutant melanoma (NEMO): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2017;18(4):435-45. DOI: 10.1016/S1470-2045(17)30180-8.10.1016/S1470-2045(17)30180-8
  42. 42. Herrero A, Pinto A, Colon-Bolea P, Casar B, Jones M, Agudo-Ibanez L, et al. Small molecule inhibition of ERK dimerization prevents tumorigenesis by RAS-ERK pathway oncogenes. Cancer Cell. 2015;28(2):170-82. DOI: 10.1016/j.ccell.2015.07.001.10.1016/j.ccell.2015.07.00126267534
  43. 43. Simanshu DK, Nissley DV, McCormick F. RAS proteins and their regulators in human disease. Cell. 2017;170(1):1733. DOI: 10.1016/j.cell.2017.06.009.10.1016/j.cell.2017.06.009555561028666118
  44. 44. Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y, Hu LL. ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med. 2020;19(3):1997-2007. DOI: 10.3892/etm.2020.8454.10.3892/etm.2020.8454702716332104259
  45. 45. Khotskaya YB, Holla VR, Farago AF, Mills Shaw KR, Meric-Bernstam F, Hong DS. Targeting TRK family proteins in cancer. Pharmacol Ther. 2017;173:5866. DOI: 10.1016/j.pharmthera.2017.02.006.10.1016/j.pharmthera.2017.02.00628174090
  46. 46. Sanchez JN, Wang T, Cohen MS. BRAF and MEK inhibitors: Use and resistance in BRAFmutated cancers. Drugs. 2018;78(5):54966. DOI: 10.1007/s40265-018-0884-8.10.1007/s40265-018-0884-8608061629488071
  47. 47. Plotnikov A, Zehorai E, Procaccia S, Seger R. The MAPK cascades: Signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta Mol Cell Res. 2011;1813(9):161933. DOI: 10.1016/j.bbamcr.2010.12.012.10.1016/j.bbamcr.2010.12.01221167873
  48. 48. Roskoski R Jr. ERK1/2 MAP kinases: Structure, function, and regulation. Pharmacol Res. 2012;66(2):10543. DOI: 10.1016/j.phrs.2012.04.005.10.1016/j.phrs.2012.04.00522569528
  49. 49. Roskoski R Jr. Targeting ERK1/2 proteinserine/threonine kinases in human cancers. Pharmacol Res. 2019;142:15168. DOI: 10.1016/j.phrs.2019.01.039.10.1016/j.phrs.2019.01.03930794926
  50. 50. Wainstein E, Seger R. The dynamic subcellular localization of ERK: mechanisms of translocation and role in various organelles. Curr Opin Cell Biol. 2016;39:1520. DOI: 10.1016/j.ceb.2016.01.007.10.1016/j.ceb.2016.01.00726827288
  51. 51. Cassier E, Gallay N, Bourquard T, Claeysen S, Bockaert J, Crepieux P, et al. Phosphorylation of β-arrestin2 at Thr383 by MEK underlies β-arrestin-dependent activation of Erk1/2 by GPCRs. Elife. 2017;6:e23777. DOI: 10.7554/eLife.23777.10.7554/eLife.23777532562128169830
  52. 52. Muñoz-Maldonado C, Zimmer Y, Medová M. A comparative analysis of individual RAS mutations in cancer biology. Front Oncol. 2019;9:1088. DOI: 10.3389/fonc.2019.01088. eCollection 2019.10.3389/fonc.2019.01088681320031681616
  53. 53. Ma Y, Xu Y, Li L. SPARCL1 suppresses the proliferation and migration of human ovarian cancer cells via the MEK/ERK signaling. Exp Ther Med. 2018;16(4):3195-201. DOI: 10.3892/etm.2018.6575.10.3892/etm.2018.6575614384030233672
  54. 54. Mahapatra DK, Asati V, Bharti SK. MEK inhibitors in oncology: a patent review (2015–Present). Expert Opin Ther Pat. 2017;27(8):887-906. DOI: 10.1080/13543776.2017.1339688.10.1080/13543776.2017.133968828594589
  55. 55. Rukhlenko OS, Khorsand F, Krstic A, Rozanc J, Alexopoulos LG, Rauch N, et al. Dissecting RAF inhibitor resistance by structurebased modeling reveals ways to overcome oncogenic RAS signaling. Cell Syst. 2018;7(2):161179.e14. DOI: 10.1016/j.cels.2018.06.002.10.1016/j.cels.2018.06.002614954530007540
  56. 56. Holderfield M, Deuker MM, McCormick F, McMahon M. Targeting RAF kinases for cancer therapy: BRAFmutated melanoma and beyond. Nat Rev Cancer. 2014;14(7):45567. DOI: 10.1038/nrc3760.10.1038/nrc3760425023024957944
  57. 57. Vandamme D, Herrero A, AlMulla F, Kolch W. Regulation of the MAPK pathway by raf kinase inhibitory protein. Crit Rev Oncog. 2014;19(6):40515. DOI: 10.1615/critrevoncog.2014011922.10.1615/CritRevOncog.2014011922
  58. 58. Colombino M, Capone M, Lissia A, Cossu A, Rubino C, De Giorgi V, et al. BRAF/NRAS mutation frequencies among primary tumors and metastases in patients with melanoma. J Clin Oncol. 2012;30(20):25229. DOI: 10.1200/JCO.2011.41.2452.10.1200/JCO.2011.41.245222614978
  59. 59. Dankner M, Rose AAN, Rajkumar S, Siegel PM, Watson IR. Classifying BRAF alterations in cancer: new rational therapeutic strategies for actionable mutations. Oncogene. 2018;37(24):3183-199. DOI: 10.1038/s41388-018-0171-x.10.1038/s41388-018-0171-x29540830
  60. 60. Sun W, Kesavan K, Schaefer BC, Garrington TP, Ware M, Johnson NL, et al. MEKK2 associates with the adapter protein Lad/RIBP and regulates the MEK5BMK1/ERK5 pathway. J Biol Chem. 2001;276(7):5093100. DOI: 10.1074/jbc.M003719200.10.1074/jbc.M00371920011073940
  61. 61. Terrell EM, Morrison DK. Rasmediated activation of the Raf family kinases. Cold Spring Harb Perspect Med. 2019;9(1):a033746. DOI: 10.1101/cshperspect.a033746.10.1101/cshperspect.a033746631114929358316
  62. 62. Jones JC, Renfro LA, Al-Shamsi HO, Schrock AB, Rankin A, Zhang BY, et al. NonV600 BRAF mutations define a clinically distinct molecular subtype of metastatic colorectal cancer. J Clin Oncol. 2017;35(23):262430. DOI: 10.1200/JCO.2016.71.4394.10.1200/JCO.2016.71.4394554945428486044
  63. 63. Seternes OM, Kidger AM, Keyse SM. Dual-specificity MAP kinase phosphatases in health and disease. Biochim Biophys Acta Mol Cell Res. 2019;1866(1):12443. DOI: 10.1016/j.bbamcr.2018.09.002.10.1016/j.bbamcr.2018.09.002622738030401534
  64. 64. Wang C, Chen Z, Nie L, Tang M, Feng X, Su D, et al. Extracellular signal-regulated kinases associate with and phosphorylate DHPS to promote cell proliferation. Oncogenesis. 2020;9(9):85. DOI: 10.1038/s41389-020-00271-1.10.1038/s41389-020-00271-1752227832989218
  65. 65. Zhou B, Der CJ, Cox AD. The role of wild type RAS isoforms in cancer. Semin Cell Dev Biol. 2016;58:609. DOI: 10.1016/j.semcdb.2016.07.012.10.1016/j.semcdb.2016.07.012502830327422332
  66. 66. Lu P, Chen J, Yan L, Yang L, Zhang L, Dai J, et al. RasGRF2 promotes migration and invasion of colorectal cancer cells by modulating expression of MMP9 through Src/Akt/NF-kappaB pathway. Cancer Biol Ther. 2018;20(4):435-43. DOI: 10.1080/15384047.2018.1529117.10.1080/15384047.2018.1529117642250330359168
  67. 67. Krishnamoorthy GP, Davidson NR, Leach SD, Zhao Z, Lowe SW, Lee G, et al. EIF1AX and RAS mutations cooperate to drive thyroid tumorigenesis through ATF4 and c-MYC. Cancer Discovery. 2019;9(2):264-81. DOI: 10.1158/2159-8290.CD-18-0606.10.1158/2159-8290.CD-18-0606637345130305285
  68. 68. Lavoie H, Sahmi M, Maisonneuve P, Marullo SA, Thevakumaran N, Jin T, et al. MEK drives BRAF activation through allosteric control of KSR proteins. Nature. 2018;554:549-53.10.1038/nature25478643312029433126
  69. 69. Song M, Finley SD. Mechanistic insight into activation of MAPK signaling by pro-angiogenic factors. BMC Syst Biol. 2018;12:145. DOI: 10.1186/s12918-018-0668-5.10.1186/s12918-018-0668-5
  70. 70. Vladimirova LY. The use of MEK inhibitors in oncology: results and prospects. Success of Modern Natural Science. 2015;3:18-30.
  71. 71. Rubinfeld H, Seger R. The ERK cascade: a prototype of MAPK signaling. Mol Biotechnol. 2005;31(2):15174. DOI: 10.1385/MB:31:2:151.10.1385/MB:31:2:151
  72. 72. Tang Q, Wu J, Zheng F, Hann SS, Chen YQ. Emodin increases expression of insulinlike growth factor binding protein 1 through activation of MEK/ERK/AMPKα and interaction of PPARγ and Sp1 in lung cancer. Cell Physiol Biochem. 2017;41(1):33957. DOI: 10.1159/000456281.10.1159/00045628128214826
  73. 73. Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, et al. The genomic landscapes of human breast and colorectal cancers. Science. 2007;318(5853):1108-13. DOI: 10.1126/science.1145720.10.1126/science.114572017932254
  74. 74. Yang S, Liu G. Targeting the Ras/Raf/MEK/ERK pathway in hepatocellular carcinoma. Oncol Lett. 2017;13(3):10417. DOI: 10.3892/ol.2017.5557.10.3892/ol.2017.5557540324428454211
  75. 75. Mandal R, Becker S, Strebhardt K. Stamping out RAF and MEK1/2 to inhibit the ERK1/2 pathway: an emerging threat to anticancer therapy. Oncogene. 2016;35(20):2547-61. DOI: 10.1038/onc.2015.329.10.1038/onc.2015.32926364606
  76. 76. Gialeli C, Theocharis AD, Karamanos NK. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 2011;278(1):16-27. DOI: 10.1111/j.1742-4658.2010.07919.x10.1111/j.1742-4658.2010.07919.x21087457
  77. 77. Braicu C, Buse M, Busuioc C, Drula R, Gulei D, Raduly L, et al. A comprehensive review on MAPK: A promising therapeutic target in cancer. Cancers (Basel). 2019;11(10):1618. DOI: 10.3390/cancers11101618.10.3390/cancers11101618682704731652660
  78. 78. Caunt CJ, Sale MJ, Smith PD, Cook SJ. MEK1 and MEK2 inhibitors and cancer therapy: the long and winding road. Nat Rev Cancer. 2015;15(10):577-92. DOI: 10.1038/nrc4000.10.1038/nrc400026399658
  79. 79. Krishna Priya S, Nagare RP, Sneha VS, Sidhanth C, Bindhya S, Manasa P, Ganesan TS. Tumour angiogenesis-Origin of blood vessels. Int J Cancer. 2016;139(4):729-35. DOI: 10.1002/ijc.30067.10.1002/ijc.3006726934471
  80. 80. Bian CX, Shi Z, Meng Q, Jiang Y, Liu LZ, Jiang BH. P70S6K 1 regulation of angiogenesis through VEGF and HIF-1alpha expression. Biochem Biophys Res Commun. 2010;398(3):395-9. DOI: 10.1016/j.bbrc.2010.06.080.10.1016/j.bbrc.2010.06.080292806120599538
DOI: https://doi.org/10.2478/rjr-2021-0017 | Journal eISSN: 2393-3356 | Journal ISSN: 2069-6523
Language: English
Page range: 90 - 100
Submitted on: Apr 16, 2021
|
Accepted on: May 20, 2021
|
Published on: Jul 31, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Akhmad Madaminov, Akbar Khasanov, Shuhrat Khatamov, Otabek Abdurakhmonov, Anvar Amonov, Zohir Shukurov, Murod Khudayorov, Rahim Bekmirzaev, Latif Nishonboev, published by Romanian Rhinologic Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.