References
- 1. Coronavirus disease (COVID-19) Pandemic study. [Internet]. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019. Accessed April 1, 2020.
- 2. Peeri NC, Shrestha N, Rahman MS, Zaki R, Tan Z, Bibi S, et al. The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: what lessons have we learned? Int J Epidemiol. 2020;pii: dyaa033. DOI: 10.1093/ije/dyaa033. [Epub ahead of print]10.1093/ije/dyaa033
- 3. Wilder-Smith A, Chiew CJ, Lee VJ. Can we contain the COVID-19 outbreak with the same measures as for SARS? Lancet Infect Dis. 2020;pii: S1473-3099(20)30129-8. DOI: 10.1016/S1473-3099(20)30129-8. [Epub ahead of print]10.1016/S1473-3099(20)30129-8
- 4. Leung PC. The efficacy of Chinese medicine for SARS: a review of Chinese publications after the crisis. Am J Chin Med. 2007;35(4):575-81. DOI: 10.1142/S0192415X07005077.10.1142/S0192415X07005077
- 5. Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet. 2003;361(9374):2045-6. DOI: 10.1016/s0140-6736(03)13615-x.10.1016/S0140-6736(03)13615-X
- 6. Wu T, Yang X, Zeng X, Poole P. Traditional Chinese medicine in the treatment of acute respiratory tract infections. Respir Med. 2008;102(8):1093-8. DOI: 10.1016/j.rmed.2008.03.015.10.1016/j.rmed.2008.03.015713491918590956
- 7. Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochim Biophys Acta. 2013;1830(6):3670-95. DOI: 10.1016/j.bbagen.2013.02.008.10.1016/j.bbagen.2013.02.008367286223428572
- 8. Yang Y, Islam MS, Wang J, Li Y, Chen X. Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARSCoV-2): A review and perspective. Int J Biol Sci. 2020;16(10):1708-17. DOI: 10.7150/ijbs.45538.10.7150/ijbs.45538709803632226288
- 9. Luo W, Su X, Gong S, Qin Y, Liu W, Li J, et al. Anti-SARS coronavirus 3C-like protease effects of Rheum palmatum L. extracts. Bioscience Trends. 2009;3(4):124-6.
- 10. Lau KM, Lee KM, Koon CM, Cheung CSF, Lau CP, Ho HM, et al. Immunomodulatory and anti-SARS activities of Houttuynia cordata. J Ethnopharmacol. 2008;118(1):79-85. DOI: 10.1016/j.jep.2008.03.018.10.1016/j.jep.2008.03.018712638318479853
- 11. Gong SJ, Su XJ, Yu HP, Li J, Qin YJ, Xu Q, et al. A study on anti-SARS-CoV 3CL protein of flavonoids from litchi chinensis sonn core. Chinese Pharmacological Bulletin. 2008;24:699-700.
- 12. Lin CW, Tsai FJ, Tsai CH, Lai CC, Wan L, Ho TY, et al. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res. 2005;68(1):36-42.10.1016/j.antiviral.2005.07.002711432116115693
- 13. Jo S, Kim S, Shin DH, Kim MS. Inhibition of SARS-CoV 3CL protease by flavonoids. J Enzyme Inhib Med Chem. 2020;35(1):145-51. DOI: 10.1080/14756366.2019.1690480.10.1080/14756366.2019.1690480688243431724441
- 14. Fung KP, Leung PC, Tsui KWS, Wan CCD, Wong KB, Waye MYM, et al. Immunomodulatory activities of the herbal formula Kwan Du Bu Fei Dang in healthy subjects: a randomised, double-blind, placebo-controlled study. Hong Kong Med J. 2011;17 Suppl 2:41-3.
- 15. Yu MS, Lee J, Lee JM, Kim Y, Chin YW, Jee JG, et al. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg Med Chem Lett. 2012;22(12):4049-54. DOI: 10.1016/j.bmcl.2012.04.081.10.1016/j.bmcl.2012.04.081712743822578462
- 16. Wu CY, Jan JT, Ma SH, Kuo CJ, Juan HF, Cheng YS, et al. Small molecules targeting severe acute respiratory syndrome human coronavirus. Proc Natl Acad Sci U S A. 2004;101(27):10012-7. DOI: 10.1073/pnas.0403596101.10.1073/pnas.040359610145415715226499
- 17. Kuhn JH, Radoshitzky SR, Li W, Wong SK, Choe H, Farzan M. The SARS Coronavirus receptor ACE 2 A potential target for antiviral therapy. In: Holzenburg A, Bogner E, editors. New Concepts of Antiviral Therapy. Boston, MA: Springer US; 2006, p.397-418.10.1007/978-0-387-31047-3_15
- 18. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020;5(4):562-9. DOI: 10.1038/s41564-020-0688-y.10.1038/s41564-020-0688-y709543032094589
- 19. Ho TY, Wu SL, Chen JC, Li CC, Hsiang CY. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res. 2007;74(2):92-101. DOI: 10.1016/j.antiviral.2006.04.014.10.1016/j.antiviral.2006.04.014711433216730806
- 20. Deng YF, Aluko RE, Jin Q, Zhang Y, Yuan LJ. Inhibitory activities of baicalin against renin and angiotensin-converting enzyme. Pharm Biol. 2012;50(4):401-6. DOI: 10.3109/13880209.2011.608076.10.3109/13880209.2011.60807622136493
- 21. Takahashi S, Yoshiya T, Yoshizawa-Kumagaye K, Sugiyama T. Nicotianamine is a novel angiotensin-converting enzyme 2 inhibitor in soybean. Biomed Res. 2015;36(3):219-24. DOI: 10.2220/biomedres.36.219.10.2220/biomedres.36.21926106051
- 22. Cheng PW, Ng LT, Chiang LC, Lin CC. Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin Exp Pharmacol Physiol. 2006;33(7):612-6.10.1111/j.1440-1681.2006.04415.x716203116789928
- 23. Chen CJ, Michaelis M, Hsu HK, Tsai CC, Yang KD, Wu YC, et al. Toona sinensis Roem tender leaf extract inhibits SARS coronavirus replication. J Ethnopharmacol. 2008;120(1):108-11.10.1016/j.jep.2008.07.048712724818762235
- 24. Chan MC, Chan RW, Mok CK, Mak NK, Wong RN. Indirubin-3’-oxime as an antiviral and immunomodulatory agent in treatment of severe human influenza virus infection. Hong Kong Med J. 2018;24 Suppl 6(5):45-7.
- 25. Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci Trends. 2020;14(1):69-71. DOI: 10.5582/bst.2020.01020.10.5582/bst.2020.0102031996494
- 26. AminJafari A, Ghasemi S. The possible of immunotherapy for COVID-19: A systematic review. Int Immunopharmacol. 2020;83:106455. Published online 2020 Apr 2. DOI: 10.1016/j.intimp.2020.106455.10.1016/j.intimp.2020.106455712819432272396