Have a personal or library account? Click to login
Is there an association between lymph node size and hyperprogression in immunotherapy-treated patients? Cover

Is there an association between lymph node size and hyperprogression in immunotherapy-treated patients?

Open Access
|Mar 2024

References

  1. YU EM., LINVILLE L., ROSENTHAL M., ARAGON-CHING JB. A contemporary review of immune checkpoint inhibitors in advanced clear cell renal cell carcinoma. Vaccines. 2021, 9:919.
  2. BARATA PC., RINI BI. Treatment of renal cell carcinoma: current status and future directions. Ca-Cancer J Clin. 2017, 67:507-24.
  3. DÍAZ-MONTERO C., RINI B. The immunology of renal cell carcinoma. Nat Rev Nephrol. 2020, 16:721-35.
  4. HSIEH JJ., PURDUE MP., SIGNORETTI S., SWANTON C., ALBIGES L., SCHMIDINGER M., et al. Renal cell carcinoma. Nat Rev Dis Primers. 2017, 3:17009.
  5. JENKINS RW., BARBIE DA., FLAHERTY KT. Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer. 2018, 118:9-16.
  6. MARIN-ACEVEDO JA., KIMBROUGH EO., LOU Y. Mechanisms of resistance to immune checkpoint inhibitors. J Hematol Oncol. 2021, 14:1-29.
  7. HARGADON KM., JOHNSON CE., WILLIAMS CJ: Immune checkpoint blockade therapy for cancer. an overview of fda-approved immune checkpoint inhibitors. Int Immunopharmacol. 2018, 62:29-39.
  8. SHIRAVAND Y., KHODADADI F., KASHANI SMA., HOSSEINI-FARD SR., HOSSEINI S., SADEGHIRAD H., et al. Immune checkpoint inhibitors in cancer therapy. Curr Oncol. 2022, 29:3044-60.
  9. LIU X., QIAO L. Hyperprogressive disease in malignant carcinoma with immune checkpoint inhibitor use: a review. Front Nutr. 2022, 9:810472.
  10. ZHAO Z., BIAN J., ZHANG J., ZHANG T., LU X. Hyperprogressive disease in patients suffering from solid malignancies treated by immune checkpoint inhibitors: a systematic review and meta-analysis. Front Oncol. 2022, 12:843707.
  11. HAN XJ., ALU A., XIAO YN., WEI YQ., WEI XW. Hyperprogression: a novel response pattern under immunotherapy. Clin Transl Med.. 2020, 10:e167.
  12. WANG X., WANG F., ZHONG M., YARDEN Y., FU L. The biomarkers of hyperprogressive disease in pd-1/pd-L1 blockage therapy. Mol Cancer. 2020, 19:81.
  13. DENIS M., DURUISSEAUX M., BREVET M., DUMONTET C. How can immune checkpoint inhibitors cause hyperprogression in solid tumors? Front Immunol. 2020, 11:492.
  14. PATEL K., MUKHI H., PATEL A., MEHTA D., CLINTON N., BROWN B., et al. Differentiating pseudoprogression from hyperprogression in patients treated with immunotherapies. Targeted Ther Oncol. 2022, 11:16.
  15. ARASANZ H., ZUAZO M., BOCANEGRA A., CHOCARRO L., BLANCO E., MARTÍNEZ M., et al. Hyperprogressive disease: main features and key controversies. Int J Mol Sci. 2021, 22:3736.
  16. PARK HJ., KIM KW., WON SE., YOON S., CHAE YK., TIRUMANI SH., et al. Definition, incidence, and challenges for assessment of hyperprogressive disease during cancer treatment with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Netw Open. 2021, 4:e211136.
  17. CHAMPIAT S., DERCLE L., AMMARI S., MASSARD C., HOLLEBECQUE A., POSTEL-VINAY S., et al. Hyperprogressive Disease Is a New Pattern of Progression in Cancer Patients Treated by Anti-PD-1/PD-L1. Clin Cancer Res. 2017, 23:1920-8.
  18. FERRARA R., MEZQUITA L., TEXIER M., LAHMAR J., AUDIGIER-VALETTE C., TESSONNIER L., et al. Hyperprogressive Disease in Patients With Advanced Non-Small Cell Lung Cancer Treated With PD-1/PD-L1 Inhibitors or With Single-Agent Chemotherapy. JAMA Oncol. 2018, 4:1543-52.
  19. KATO S., GOODMAN A., WALAVALKAR V., BARKAUSKAS DA., SHARABI A., KURZROCK R. Hyperprogressors after Immunotherapy: analysis of genomic alterations associated with accelerated growth rate. Clin Cancer Res. 2017, 23:4242-50.
  20. ADASHEK JJ., KATO S., FERRARA R., LO RUSSO G., KURZROCK R. Hyperprogression and immune checkpoint inhibitors: hype or progress? Oncologist. 2020, 25:94-8.
  21. MATOS I., MARTIN-LIBERAL J., GARCÍA-RUIZ A., HIERRO C., OCHOA DE OLZA M., VIAPLANA C., et al. Capturing hyperprogressive disease with immune-checkpoint inhibitors using recist 1.1 criteria.. Clin Cancer Res. 2020, 26:1846-55.
  22. KAS B., TALBOT H., FERRARA R., RICHARD C., LAMARQUE JP., PITRE-CHAMPAGNAT S., et al. Clarification of definitions of hyperprogressive disease during immunotherapy for non-small cell lung cancer. JAMA oncol. 2020, 6:1039-46.
  23. JIA W., GAO Q., HAN A., ZHU H., YU J. The potential mechanism, recognition and clinical significance of tumor pseudoprogression after immunotherapy. Cancer Biol Med. 2019, 16:655.
  24. MA Y., WANG Q., DONG Q., ZHAN L., ZHANG J. How to differentiate pseudoprogression from true progression in cancer patients treated with immunotherapy. Am J Cancer Res. 2019, 9:1546-53.
  25. WANG Y., WANG M., WU HX., XU RH. Advancing to the era of cancer immunotherapy. Cancer Commun (Lond). 2021, 9:803-29.
  26. LIN M., VANNESTE B., YU Q., CHEN Z., PENG J., CAI X. Hyperprogression under immunotherapy: a new form of immunotherapy response?—a narrative literature review. Transl Lung Cancer. 2021, 10:3276-91.
  27. KOCIKOWSKI M., DZIUBEK K., PARYS M. Hyperprogression under immune checkpoint-based immunotherapy–current understanding, the role of pd-1/pd-l1 tumour-intrinsic signalling, future directions and a potential large animal model. Cancers. 2020, 12:804.
  28. KROEGER N., PANTUCK AJ., CONNOR WELLS JC. Characterizing the impact of lymph node metastases on the survival outcome for metastatic renal cell carcinoma patients treated with targeted therapies. Eur Urol. 2015, 68:506-15.
  29. STARES M., CHAUHAN V., MOUDGIL-JOSHI J. Initial active surveillance for patients with metastatic renal cell carcinoma: 10 years experience at a regional cancer Centre. Cancer Med.. 2022, 12:5255-64.
  30. LI C., JIANG P., WEI S., XU X., WANG J. Regulatory t cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects. Molecular cancer. 2020, 19:1-23.
  31. WEI Z., ZHANG Y. Immune cells in hyperprogressive disease under immune checkpoint-based immunotherapy. Cells. 2022, 11:1758.
  32. HAN J., DONG L., WU M., MA F. Dynamic polarization of tumor-associated macrophages and their interaction with intratumoral t cells in an inflamed tumor microenvironment: from mechanistic insights to therapeutic opportunities.. Front Immunol. 2023, 14:2246.
  33. TAY C., QIAN Y., SAKAGUCHI S. Hyper-progressive disease: the potential role and consequences of t-regulatory cells foiling anti-pd-1 cancer immunotherapy. Cancers (Basel). 2020, 12:48.
  34. OHUE Y., NISHIKAWA H. Regulatory t (treg) cells in cancer: can treg cells be a new therapeutic target? Cancer Sci. 2019, 110:2080-9.
  35. FENG Y., YE Z., SONG F., HE Y., LIU J. The role of tams in tumor microenvironment and new research progress. Stem Cells Int. 2022, 2022:5775696.
  36. TOKI MI., SYRIGOS N., SYRIGOS K. Hyperprogressive disease: a distinct pattern of progression to immune checkpoint inhibitors. Int J Cancer. 2020, 149:277-86.
  37. ZAREBA P., PINTHUS JH., RUSSO P. The contemporary role of lymph node dissection in the management of renal cell carcinoma.. Ther Adv Urol. 2018, 10:335-42.
  38. SUN JX., LIU CQ., ZHANG ZB. A novel predictive model of pathological lymph node metastasis constructed with preoperative independent predictors in patients with renal cell carcinoma. J Clin Med. 2023, 12:441.
DOI: https://doi.org/10.2478/rjim-2023-0025 | Journal eISSN: 2501-062X | Journal ISSN: 1220-4749
Language: English
Page range: 33 - 43
Submitted on: Jul 22, 2023
Published on: Mar 23, 2024
Published by: N.G. Lupu Internal Medicine Foundation
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Mohammad S. Alkader, Rashed Z. Altaha, Eslam H. Jabali, Ola A. Attieh, Ala’ W. Matalqa, published by N.G. Lupu Internal Medicine Foundation
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.