Have a personal or library account? Click to login
Comparison of anthropometric indices for predicting the risk of metabolic syndrome in older adults Cover

Comparison of anthropometric indices for predicting the risk of metabolic syndrome in older adults

Open Access
|Mar 2021

References

  1. 1. LARTEY ST., MAGNUSSEN CG., SI L., BOATENG GO., DE GRAAFF B., BIRITWUM RB., et al. Rapidly increasing prevalence of overweight and obesity in older Ghanaian adults from 2007–2015: Evidence from WHO-SAGE Waves 1 and 2. PloS one. 2019; 14: e0215045.10.1371/journal.pone.0215045669970131425568
  2. 2. GHADIMI R. ASGHARZADEH E., SAJADI P. Obesity among Elementary Schoolchildren: A Growing Concern in the North of Iran, 2012. International Journal of Preventive Medicine. 2015; 6:99.
  3. 3. VAISI-RAYGANI A., MOHAMMADI M., JALALI R., GHOBADI A., SALARI N. The prevalence of obesity in older adults in Iran: a systematic review and meta-analysis. BMC Geriatrics. 2019; 19:371.10.1186/s12877-019-1396-4692929931870324
  4. 4. CERCATO C., FONSECA FA. Cardiovascular risk and obesity. Diabetology & Metabolic Syndrome. 2019; 11:74.10.1186/s13098-019-0468-0671275031467596
  5. 5. CSIGE I., UJVAROSY D., SZABO Z., LORINCZ I., PARAGH G., et al. The Impact of Obesity on the Cardiovascular System. Journal of diabetes research, 2018; 2018:3407306–3407306.10.1155/2018/3407306624758030525052
  6. 6. BIJANI A., HOSSEINI SR., GHADIMI R., MOUODI S. Association of metabolic syndrome and its components with survival of older adults. Int J Endocrinol Metab. 2020; 18: e91837.10.5812/ijem.91837714424432308697
  7. 7. SIGIT FS., TAHAPARY DL., TROMPET S., SARTONO E., WILLEMS VAN DIJK K., et al. The prevalence of metabolic syndrome and its association with body fat distribution in middle-aged individuals from Indonesia and the Netherlands: a cross-sectional analysis of two population-based studies. Diabetology & Metabolic Syndrome, 2020; 12:2.10.1186/s13098-019-0503-1694794031921359
  8. 8. BEN-YACOV L., AINEMBABAZI P., STARK AH., KIZITO S., BAHENDEKA S. Prevalence and sex-specific patterns of metabolic syndrome in rural Uganda. BMJ NPH Epub. 2020; 0:1–710.1136/bmjnph-2019-000050766450433235966
  9. 9. KASSI E., PERVANIDOU P., KALTSAS G., CHROUSOS G. Metabolic syndrome: definitions and controversies. BMC medicine. 2011; 9:48.10.1186/1741-7015-9-48311589621542944
  10. 10. BORGA M., WEST J., BELL JD., HARVEY NC., ROMU T., HEYMSFIELD SB., DAHLQVIST LEINHARD O. Advanced body composition assessment: from body mass index to body composition profiling. Journal of investigative medicine: the official publication of the American Federation for Clinical Research. 2018; 66:1–9.10.1136/jim-2018-000722599236629581385
  11. 11. KULLBERG J., BRANDBERG J., ANGELHED JE., FRIMMEL H., BERGELIN E., STRID L., et al. Whole-body adipose tissue analysis: comparison of MRI, CT and dual energy X-ray absorptiometry. Br J Radiol. 2009; 82:123–130.10.1259/bjr/8008315619168691
  12. 12. TRAN NTT., BLIZZARD CL., LUONG KN., TRUONG NLV., TRAN BQ., OTAHAL P., et al. The importance of waist circumference and body mass index in cross-sectional relationships with risk of cardiovascular disease in Vietnam. PloS one. 2018; 13: e0198202–e0198202.10.1371/journal.pone.0198202597360429813112
  13. 13. ORTEGA FB., SUI X., LAVIE CJ., BLAIR SN. Body Mass Index, the Most Widely Used But Also Widely Criticized Index: Would a Criterion Standard Measure of Total Body Fat Be a Better Predictor of Cardiovascular Disease Mortality?. Mayo Clinic proceedings. 2016; 91:443–455.10.1016/j.mayocp.2016.01.008482166226948431
  14. 14. GHESMATY SANGACHIN M., CAVUOTO LA., WANG Y. Use of various obesity measurement and classification methods in occupational safety and health research: a systematic review of the literature. BMC Obesity. 2018; 5:28.10.1186/s40608-018-0205-5621142230410773
  15. 15. HOSSEINI SR., SAJJADI P., JAMALI S., NOREDDINI HG., GHADIMI R., BIJANI A. The relationship between body mass index and bone mineral density in older people. Journal of Babol University of Medical Sciences. 2014; 16:14–22 [in Persian]. Available from: http://jbums.org/article-11-4824-fa.html.
  16. 16. PALEY CA., JOHNSON MI. Abdominal obesity and metabolic syndrome: exercise as medicine?. BMC sports science, medicine & rehabilitation. 2018; 10:7–7.10.1186/s13102-018-0097-1593592629755739
  17. 17. PINHO CPS, Diniz ADS, DE ARRUDA IKG., LEITE APDL., PETRIBU MMV., RODRIGUES IG. Predictive models for estimating visceral fat: The contribution from anthropometric parameters. PLoS ONE. 2017; 12: e0178958.10.1371/journal.pone.0178958552441128742086
  18. 18. OBEIDAT AA., AHMAD MN., HADDAD FH., AZZEH FS. Evaluation of several anthropometric indices of obesity as predictors of metabolic syndrome in Jordanian adults. Nutr Hosp. 2015; 32:667–677.
  19. 19. GIERACH M., GIERACH J., EWERTOWSKA M., ARNDT A., JUNIK R. Correlation between Body Mass Index and Waist Circumference in Patients with Metabolic Syndrome. ISRN endocrinology. 2014; 2014:514589–514589.10.1155/2014/514589396073624729884
  20. 20. YOO E-G. Waist-to-height ratio as a screening tool for obesity and cardiometabolic risk. Korean Journal of Pediatrics. 2016; 59:425–431.10.3345/kjp.2016.59.11.425511850127895689
  21. 21. ATAIE-JAFARI A., NAMAZI N., DJALALINIA S., CHAGHAMIRZAYI P., ABDAR ME., ZADEHE SS., et al. Neck circumference and its association with cardiometabolic risk factors: a systematic review and meta-analysis. Diabetology & Metabolic Syndrome. 2018; 10:72.10.1186/s13098-018-0373-y616292830288175
  22. 22. BAENA CP., LOTUFO PA., FONESCA MG., SANTOS IS., GOULART AC., BENSENOR IM. Neck Circumference Is Independently Associated with Cardiometabolic Risk Factors: Cross-Sectional Analysis from ELSA-Brasil. Metab Syndr Relat Disord. 2016; 14:145–153.10.1089/met.2015.008326824404
  23. 23. WANG H., LIU A., ZHAO T., et al. Comparison of anthropometric indices for predicting the risk of metabolic syndrome and its components in Chinese adults: a prospective, longitudinal study. BMJ Open. 2017; 7:e016062.10.1136/bmjopen-2017-016062562348428928179
  24. 24. HOSSEINI SR., CUMMING RG., KHEIRKHAH F., NOOREDDINI H., BIJANI A., MIKANIKI E., et al. Cohort profile: The Amirkola Health and Aging Project. Int J Epidemiol. 2014; 43:1393–1400.10.1093/ije/dyt08923918798
  25. 25. PURNELL JQ. Definitions, Classification, and Epidemiology of Obesity. [Updated 2018 Apr 12]. In: Feingold KR, Anawalt B, Boyce A, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279167/
  26. 26. VIKRAM GOWDA KP. Abdominal volume index and conicity index in predicting metabolic abnormalities in young women of different socioeconomic class. International Journal of Medical Science and Public Health Int. 2016; 5(7):1452–6.10.5455/ijmsph.2016.13102015231
  27. 27. MARBOU WJT., KUETE V. Prevalence of Metabolic Syndrome and Its Components in Bamboutos Division’s Adults, West Region of Cameroon. Biomed Res Int. 2019; 2019:9676984.
  28. 28. DALVAND S., NIKSIMA SH., MESHKANI R., GHANEI GHESHLAGH R., SADEGH-NEJADI S., KOOTI W., et al. Prevalence of Metabolic Syndrome among Iranian Population: A Systematic Review and Meta-analysis. Iranian Journal of Public Health. 2017; 46:456–467.
  29. 29. BIJANI A., HOSSEINI S.R., GHADIMI R., MOUODI S. Association of Metabolic Syndrome and Its Components with Survival of Older Adults. Int J Endocrinol Metab. 2020; 18 (1): e91837.10.5812/ijem.91837714424432308697
  30. 30. QUAYE L., OWIREDU WKBA., AMIDU N., DAPARE PPM., ADAMS Y. Comparative Abilities of Body Mass Index, Waist Circumference, Abdominal Volume Index, Body Adiposity Index, and Conicity Index as Predictive Screening Tools for Metabolic Syndrome among Apparently Healthy Ghanaian Adults. Journal of Obesity. 2019; 2019:8143179.10.1155/2019/8143179674516931565431
  31. 31. ZHANG XH., ZHANG M., HE J., YAN YZ., MA JL., WANG K., et al. Comparison of Anthropometric and Atherogenic Indices as Screening Tools of Metabolic Syndrome in the Kazakh Adult Population in Xinjiang. Int J Environ Res Public Health. 2016; 13:428.10.3390/ijerph13040428484709027092520
  32. 32. SULIGA E., CIESLA E., GLUSZEK-OSUCH M., ROGULA T., GLUSZEK S., KOZIEL D. The Usefulness of Anthropometric Indices to Identify the Risk of Metabolic Syndrome. Nutrients. 2019; 2598.10.3390/nu11112598689375831671800
  33. 33. ABULMEATY MMA., ALMAJWAL AM., ALMADANI NK., ALDOSARI MS., ALNAJIM AA., ALI SB., et al. Anthropometric and central obesity indices as predictors of long-term cardiometabolic risk among Saudi young and middle-aged men and women. Saudi medical journal. 2017; 38:372–380.10.15537/smj.2017.4.18758544718928397943
DOI: https://doi.org/10.2478/rjim-2020-0026 | Journal eISSN: 2501-062X | Journal ISSN: 1220-4749
Language: English
Page range: 43 - 49
Submitted on: Mar 2, 2020
Published on: Mar 5, 2021
Published by: N.G. Lupu Internal Medicine Foundation
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Sara Khosravian, Mohammad Ali Bayani, Seyed Reza Hosseini, Ali Bijani, Simin Mouodi, Reza Ghadimi, published by N.G. Lupu Internal Medicine Foundation
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.