Have a personal or library account? Click to login
Anticoagulant protein S in COVID-19: low activity, and associated with outcome Cover

Anticoagulant protein S in COVID-19: low activity, and associated with outcome

Open Access
|Dec 2020

References

  1. 1. CAI A, MCCLAFFERTY B, BENSON J, RAMGOBIN D, KALAYANAMITRA R, SHAHID Z, et al. COVID-19: Catastrophic Cause of Acute Lung Injury. S D Med. 2020; 73(6):252–260.
  2. 2. CARSANA L, SONZOGNI A, NASR A, ROSSI RS, PELLEGRINELLI A, ZERBI P, et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study [published online ahead of print, 2020 Jun 8]. Lancet Infect Dis. 2020;S1473-3099(20)30434-5. doi:10.1016/S1473-3099(20)30434-5.10.1016/S1473-3099(20)30434-5
  3. 3. CONNORS JM, LEVY JH. Thromboinflammation and the hypercoagulability of COVID-19. J Thromb Haemost. 2020; 18(7):1559–1561. doi:10.1111/jth.14849.10.1111/jth.1484932302453
  4. 4. ACKERMANN M, VERLEDEN SE, KUEHNEL M, HAVERICH A, WELTE T, LAENGER F, et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med. 2020; 383(2):120–128. doi:10.1056/NEJMoa2015432.10.1056/NEJMoa2015432741275032437596
  5. 5. BILALOGLU S, APHINYANAPHONGS, JONES S, ITURRATE E, HOCHMAN J, BERGER JS. Thrombosis in Hospitalized Patients With COVID-19 in a New York City Health System [published online ahead of print, 2020 Jul 20]. JAMA. 2020; e2013372. doi:10.1001/jama.2020.13372.10.1001/jama.2020.13372737250932702090
  6. 6. MIDDELDORP S, COPPENS M, VAN HAAPS TF, FOPPEN M, VLAAR AP, MULLER MCA, et al. Incidence of venous thromboembolism in hospitalized patients with COVID-19 [published online ahead of print, 2020 May 5]. J Thromb Haemost. 2020; doi:10.1111/jth.14888. doi:10.1111/jth.14888.10.1111/jth.14888749705232369666
  7. 7. LODIGIANI C, IAPICHINO G, CARENZO L, CECCONI M, FERRAZZI P, SEBASTIAN T et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res. 2020; 191:9–14. doi:10.1016/j.thromres.2020.04.024.10.1016/j.thromres.2020.04.024717707032353746
  8. 8. OXLEY TJ, MOCCO J, MAJIDI S, KELLNER CP, SHOIRAH H, SINGH IP, et al. Large-Vessel Stroke as a Presenting Feature of Covid-19 in the Young. N Engl J Med. 2020; 382(20):e60. doi:10.1056/NEJMc2009787.10.1056/NEJMc2009787720707332343504
  9. 9. KLOK FA, KRUIP MJHA, VAN DER MEER NJM, ARBOUS MS, GOMMERS DAMPJ, KANT KM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020; 191:145–147. doi:10.1016/j.thromres.2020.04.013.10.1016/j.thromres.2020.04.013714671432291094
  10. 10. LEMKE G, SILVERMAN GJ. Blood clots and TAM receptor signalling in COVID-19 pathogenesis. Nat Rev Immunol. 2020; 20(7):395–396. doi:10.1038/s41577-020-0354-x.10.1038/s41577-020-0354-x726496832488201
  11. 11. XIE J, COVASSIN N, FAN Z, SINGH P, GAO W, LI G, et al. Association Between Hypoxemia and Mortality in Patients With COVID-19. Mayo Clin Proc. 2020; 95(6):1138–1147. doi:10.1016/j.mayocp.2020.04.006.10.1016/j.mayocp.2020.04.006715146832376101
  12. 12. LLITJOS JF, LECLERC M, CHOCHOIS C, MONSALLIER JM, RAMAKAS M, AUVRAY M, et al. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. J Thromb Haemost. 2020; 18(7):1743–1746. doi:10.1111/jth.14869.10.1111/jth.14869
  13. 13. ABOU-ISMAIL MY, DIAMOND A, KAPOOR S, ARAFAH Y, NAYAK L. The hypercoagulable state in COVID-19: Incidence, pathophysiology, and management. Thromb Res. 2020; 194:101–115. doi:10.1016/j.thromres.2020.06.029.10.1016/j.thromres.2020.06.029
  14. 14. LEMKE G. Biology of the TAM receptors. Cold Spring Harb Perspect Biol. 2013; 5(11):a009076. Published 2013 Nov 1. doi:10.1101/cshperspect.a009076.10.1101/cshperspect.a009076
  15. 15. VARGA Z, FLAMMER AJ, STEIGER P, HABERECKER M, ANDERMATT R, ZINKERNAGEL AS, et al. Endothelial cell infection and endothelitis in COVID-19. Lancet. 2020;395(10234):1417–1418. doi:10.1016/S0140-6736(20)30937-5.10.1016/S0140-6736(20)30937-5
  16. 16. BURSTYN-COHEN T, HEEB MJ, LEMKE G. Lack of protein S in mice causes embryonic lethal coagulopathy and vascular dysgenesis. J Clin Invest. 2009; 119(10):2942–2953. doi:10.1172/JCI39325.10.1172/JCI39325
  17. 17. BOULLANGER N, El KOURI D, TROSSAERT M, TRUCHAUD F, TREWICK D, PLANCHON B. Coagulation activation in patients with an inflammatory syndrome: is there a link with acquired protein S deficiency? Blood Coagulation & Fibrinolysis: an International Journal in Haemostasis and Thrombosis. 1998 Mar; 9(2):167–171. DOI: 10.1097/00001721-199803000-00007.10.1097/00001721-199803000-00007
  18. 18. STAHL CP, WIDEMAN CS, SPIRA TJ, HAFF EC, HIXON GJ, EEVATT BL. Protein S deficiency in men with long-term human immunodeficiency virus infection. Blood. 1993; 81(7):1801–1807.10.1182/blood.V81.7.1801.1801
  19. 19. MALIA RG, KITCHEN S, GREAVES M, PRESTON FE. Inhibition of activated protein C and its cofactor protein S by antiphospholipid antibodies. Br J Haematol. 1990; 76(1):101–107. doi:10.1111/j.1365-2141.1990.tb07843.x.10.1111/j.1365-2141.1990.tb07843.x
  20. 20. SORICE M, GRIGGI T, ARICIERI P, CIRCELLA A, D’AGOSTINO F, RANIERI M, et al. Protein S and HIV infection. The role of anticardiolipin and anti-protein S antibodies. Thromb Res. 1994; 73(3–4):165–175. doi:10.1016/0049-3848(94)90095-7.10.1016/0049-3848(94)90095-7
  21. 21. ERBE M, RICKERTS V, BAUERSACHS RM, LINDHOFF-LAST E. Acquired protein C and protein S deficiency in HIV-infected patients. Clin Appl Thromb Hemost. 2003; 9(4):325–331. doi:10.1177/107602960300900408.10.1177/10760296030090040814653442
  22. 22. FEDAK KM, BERNAL A, CAPSHAW ZA, GROSS S. Applying the Bradford Hill criteria in the 21st century: how data integration has changed causal inference in molecular epidemiology. Emerg Themes Epidemiol. 2015; 12:14. Published 2015 Sep 30. doi:10.1186/s12982-015-0037-4.10.1186/s12982-015-0037-4458911726425136
  23. 23. FAN BE, CHONG VCL, CHAN SSW, LIM GH, LIM KGE, TAN GB, et al. Hematologic parameters in patients with COVID-19 infection. Am J Hematol. 2020; 95(6):E131–E134. doi:10.1002/ajh.25774.10.1002/ajh.2577432129508
  24. 24. KONG M, ZHANG H, CAO X, MAO X, LU Z. Higher level of neutrophil-to-lymphocyte is associated with severe COVID-19. Epidemiol Infect. 2020; 148:e139. Published 2020 Jul 9. doi:10.1017/S0950268820001557.10.1017/S0950268820001557736095032641174
  25. 25. TWADELL SH, BAINES KJ, GRAINGE C, GIBSON PG. The Emerging Role of Neutrophil Extracellular Traps in Respiratory Disease. Chest. 2019; 156(4):774–782. doi:10.1016/j.chest.2019.06.012.10.1016/j.chest.2019.06.01231265835
  26. 26. PORTO BN, STEIN RT. Neutrophil Extracellular Traps in Pulmonary Diseases: Too Much of a Good Thing?. Front Immunol. 2016; 7:311. Published 2016 Aug 15. doi:10.3389/fimmu.2016.00311.10.3389/fimmu.2016.00311498361227574522
  27. 27. PFEILER S, MASSBERG S, ENGELMANN B. Biological basis and pathological relevance of microvascular thrombosis. Thromb Res. 2014; 133 Suppl 1:S35–S37. doi:10.1016/j.thromres.2014.03.016.10.1016/j.thromres.2014.03.01624759139
  28. 28. ZUO Y, YALAVARTHI S, SHI H, GOCKMAN K, ZUO M, MADISON JA, et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020; 5(11):e138999. Published 2020 Jun 4. doi:10.1172/jci.insight.138999.10.1172/jci.insight.138999730805732329756
DOI: https://doi.org/10.2478/rjim-2020-0024 | Journal eISSN: 2501-062X | Journal ISSN: 1220-4749
Language: English
Page range: 251 - 258
Submitted on: Aug 1, 2020
Published on: Dec 17, 2020
Published by: N.G. Lupu Internal Medicine Foundation
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Laura Elena Stoichitoiu, Larisa Pinte, Marius Ioan Balea, Valentin Nedelcu, Camelia Badea, Cristian Baicus, published by N.G. Lupu Internal Medicine Foundation
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.