Have a personal or library account? Click to login
3D Building documentation using portable LiDAR systems – functionality analysis Cover

3D Building documentation using portable LiDAR systems – functionality analysis

Open Access
|Dec 2025

References

  1. Abbas, S. F. and Abed, F. M. (2024). Evaluating the Accuracy of iPhone Lidar Sensor for Building Facades Conservation, page 141–144. Springer Nature Switzerland, doi:10.1007/978-3-031-48715-6_31.
  2. Atencio, E., Muñoz, A., Lozano, F., González-Arteaga, J., and Lozano-Galant, J. A. (2024). Calibration of iPad Pro Li-DAR Scanning Parameters for the Scanning of Heritage Structures Using Orthogonal Arrays. Applied Sciences, 14(24):11814, doi:10.3390/app142411814.
  3. Caffarri, C., Chirico, S., and De Falco, A. (2025). The Use of iPad Pro’s Built-in LiDAR Sensor in the Scan-to-BIM Workflow for Cultural Heritage Buildings Digitization, page 302–316. Springer Nature Switzerland, doi:10.1007/978-3-031-98379-5_23.
  4. Clini, P., Angeloni, R., D’Alessio, M., Coppetta, L., and Galli, I. (2025). Digital Representation and AI-driven Virtual Experience for Historic Houses. The Case Study of Borgo Storico Seghetti Panichi. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-M-9–2025:337–344, doi:10.5194/isprs-archives-xlviii-m-9-2025-337-2025.
  5. Construction Law (1994). Act of 7 July 1994 – Construction Law. Act. Journal of Laws, 2025, item 418, Poland.
  6. Feng, Y., Zhang, X.-L., Feng, S.-J., Zhao, Y., Kong, Q.-Z., and Zhu, S.-L. (2025). Metro tunnel deformation detection based on laser scanning robot and point cloud semantic segmentation. Tunnelling and Underground Space Technology, 166:106966, doi:10.1016/j.tust.2025.106966.
  7. Fretes, H., Gomez-Redondo, M., Paiva, E., Rodas, J., and Gregor, R. (2019). A Review of Existing Evaluation Methods for Point Clouds Quality. In 2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS), page 247–252. IEEE, doi:10.1109/reduas47371.2019.8999725.
  8. Gollob, C., Ritter, T., Kraßnitzer, R., Tockner, A., and Nothdurft, A. (2021). Measurement of Forest Inventory Parameters with Apple iPad Pro and Integrated LiDAR Technology. Remote Sensing, 13(16):3129, doi:10.3390/rs13163129.
  9. Guerriero, L., Annibali Corona, M., Di Martire, D., Francioni, M., Limongiello, M., Tufano, R., and Calcaterra, D. (2024). Rockfall susceptibility analysis of the “San Michele Arcangelo” historic trail (Central Italy) based on virtual outcrops and multiple propagation models. Bulletin of Engineering Geology and the Environment, 83(7), doi:10.1007/s10064-024-03764-0.
  10. Javaheri, A., Brites, C., Pereira, F., and Ascenso, J. (2017). Subjective and objective quality evaluation of 3D point cloud denoising algorithms. In 2017 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), page 1–6. IEEE, doi:10.1109/icmew.2017.8026263.
  11. Kottner, S., Thali, M. J., and Gascho, D. (2023). Using the iPhone’s LiDAR technology to capture 3D forensic data at crime and crash scenes. Forensic Imaging, 32:200535, doi:10.1016/j.fri.2023.200535.
  12. Krausková, D., Mikita, T., Hrůza, P., and Kudrnová, B. (2025). Accuracy Assessment of iPhone LiDAR for Mapping Streambeds and Small Water Structures in Forested Terrain. Sensors, 25(19):6141, doi:10.3390/s25196141.
  13. Martinenko, A., Pejić, M., Obradović, M., and Ristić, N. D. (2025). Advancing 3D reconstruction: Evaluating surveying techniques for medium-sized heritage objects. Measurement, 256:118596, doi:10.1016/j.measurement.2025.118596.
  14. Mokroš, M., Mikita, T., Singh, A., Tomaštík, J., Chudá, J., Wężyk, P., Kuželka, K., Surový, P., Klimánek, M., Zięba-Kulawik, K., Bobrowski, R., and Liang, X. (2021). Novel low-cost mobile mapping systems for forest inventories as terrestrial laser scanning alternatives. International Journal of Applied Earth Observation and Geoinformation, 104:102512, doi:10.1016/j.jag.2021.102512.
  15. Muszyński, Z. and Rybak, J. (2021). Application of Geodetic Measuring Methods for Reliable Evaluation of Static Load Test Results of Foundation Piles. Remote Sensing, 13(16):3082, doi:10.3390/rs13163082.
  16. Mêda, P., Calvetti, D., and Sousa, H. (2023). Exploring the Potential of iPad-LiDAR Technology for Building Renovation Diagnosis: A Case Study. Buildings, 13(2):456, doi:10.3390/buildings13020456.
  17. Ordóñez, C., Calvopiña, J., Toapanta, S., Carranco, A., and González, J. (2024). Integrating lidar technology in artisanal and small-scale mining: A comparative study of iPad Pro LiDAR sensor and traditional surveying methods in Ecuador’s artisanal gold mine. Journal of Geodetic Science, 14(1), doi:10.1515/jogs-2022-0181.
  18. PN-ISO 9836:2022-07 (2022). PN-ISO 9836:2022-07: Performance standards in building – Calculation of area and volume (in Polish).
  19. Riquelme, A., Tomás, R., Cano, M., Pastor, J. L., and Jordá-Bordehore, L. (2021). Extraction of discontinuity sets of rocky slopes using iPhone-12 derived 3DPC and comparison to TLS and SfM datasets. IOP Conference Series: Earth and Environmental Science, 833(1):012056, doi:10.1088/1755-1315/833/1/012056.
  20. Rizali, M. I., Idris, A. N., Rizali, M. H., and Syafuan, W. M. (2022). Quality Assessment of 3D Point Clouds on the Different Surface Materials Generated from iPhone LiDAR Sensor. International Journal of Geoinformatics, page 51–59, doi:10.52939/ijg.v18i4.2259.
  21. Saptari, A. Y., Widyastuti, R., Suhari, K. T., Suseno, A. D., Hernandi, A., Haris, R. A., and Nurmaulia, S. L. (2024). The Use of iPad LiDAR to Build a Digital Elevation Model in Defining Customary Zones (Case Study of Panglipuran, Bali). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-2/W8-2024:411–418, doi:10.5194/isprs-archives-xlviii-2-w8-2024-411-2024.
  22. Sirmacek, B. and Lindenbergh, R. (2014). Accuracy assessment of building point clouds automatically generated from iphone images. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL–5:547–552, doi:10.5194/isprsarchives-xl-5-547-2014.
  23. Tatsumi, S., Yamaguchi, K., and Furuya, N. (2022). ForestScanner: A mobile application for measuring and mapping trees with <scp>LiDAR</scp> -equipped <scp>iPhone</scp> and <scp>iPad</scp>. Methods in Ecology and Evolution, 14(7):1603–1609, doi:10.1111/2041-210x.13900.
  24. Teppati Losè, L., Spreafico, A., Chiabrando, F., and Giulio Tonolo, F. (2022). Apple LiDAR Sensor for 3D Surveying: Tests and Results in the Cultural Heritage Domain. Remote Sensing, 14(17):4157, doi:10.3390/rs14174157.
  25. Ulvi, A. and Hamal, S. N. G. (2025). Fusion of IPAD Pro LiDAR and SfM-Based Photogrammetry for 3D Documentation of Cultural Heritage. Iranian Journal of Science and Technology, Transactions of Civil Engineering, doi:10.1007/s40996-025-01936-w.
  26. Vogt, M., Rips, A., and Emmelmann, C. (2021). Comparison of iPad Pro®’s LiDAR and TrueDepth Capabilities with an Industrial 3D Scanning Solution. Technologies, 9(2):25, doi:10.3390/technologies9020025.
  27. Wyjadłowski, M., Muszyński, Z., and Kujawa, P. (2021). Application of Laser Scanning to Assess the Roughness of the Diaphragm Wall for the Estimation of Earth Pressure. Sensors, 21(21):7275, doi:10.3390/s21217275.
  28. Zaczek-Peplinska, J. and Kowalska, M. E. (2022). Evaluation of the LiDAR in the Apple iPhone 13 Pro for use in Inventory Work. FIG Peer Review Journal, pages 1–19.
  29. Zhuang, Z., Zhi, Z., Han, T., Chen, Y., Chen, J., Wang, C., Cheng, M., Zhang, X., Qin, N., and Ma, L. (2024). A Survey of Point Cloud Completion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 17:5691–5711, doi:10.1109/jstars.2024.3362476.
DOI: https://doi.org/10.2478/rgg-2025-0022 | Journal eISSN: 2391-8152 | Journal ISSN: 0867-3179
Language: English
Page range: 109 - 119
Submitted on: Nov 27, 2025
|
Accepted on: Dec 19, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Kinga Wawrzyniak, Maria Elżbieta Kowalska, Janina Zaczek-Peplinska, Zbigniew Muszyński, published by Warsaw University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.