References
- Avini, R., Kumar, P., and Hughes, S. J. (2019). Wind loading on high-rise buildings and the comfort effects on the occupants. Sustainable Cities and Society, 45:378–394, doi:10.1016/j.scs.2018.10.026.
- Breuer, P., Chmielewski, T., Górski, P., Konopka, E., and Tarczyński, L. (2008). The Stuttgart TV Tower — displacement of the top caused by the effects of sun and wind. Engineering Structures, 30(10):2771–2781, doi:10.1016/j.engstruct.2008.03.008.
- Calisi, D., Botta, S., and Cannata, A. (2023). Integrated Surveying, from Laser Scanning to UAV Systems, for Detailed Documentation of Architectural and Archeological Heritage. Drones, 7(9):568, doi:10.3390/drones7090568.
- Celebi, M. (2000). GPS in dynamic monitoring of long-period structures. Soil Dynamics and Earthquake Engineering, 20(5-8):477–483, doi:10.1016/S0267-7261(00)00094-4.
- Chapain, S. and Aly, A. M. (2019). Vibration attenuation in high-rise buildings to achieve system-level performance under multiple hazards. Engineering Structures, 197:109352, doi:10.1016/j.engstruct.2019.109352.
- Chen, L., Chang, J., Xu, J., and Yang, Z. (2023). Automatic Measurement of Inclination Angle of Utility Poles Using 2D Image and 3D Point Cloud. Applied Sciences, 13(3):1688, doi:10.3390/app13031688.
- Chen, Y., Huang, D., Ding, X., Xu, Y. L., and Ko, J. M. (2001). Measurement of vibrations of tall buildings with GPS: a case study. In Health Monitoring and Management of Civil Infrastructure Systems, volume 4337, pages 477–483. SPIE, Bellingham (WA), doi:10.1117/12.435624.
- Feng, Z. (2017). Research on Safety Management and Risk Control of High-rise Buildings. Theoretical Research in Urban Construction.
- Głowacki, T., Grzempowski, P., Sudoł, E., Wajs, J., and Zając, M. (2016). The assessment of the application of terrestrial laser scanning for measuring the geometrics of cooling towers. Geomatics, Landmanagement and Landscape, 4:49–57, doi:10.15576/GLL/2016.4.49.
- Głowacki, T. (2022). Monitoring the Geometry of Tall Objects in Energy Industry. Energies, 15(7):2324, doi:10.3390/en15072324.
- Han, Y. and Davidson, R. A. (2012). Probabilistic seismic hazard analysis for spatially distributed infrastructure. Earthquake Engineering and Structural Dynamics, 41(15):2141–2158, doi:10.1002/eqe.2179.
- Hauschild, W., Lemke, E., et al. (2014). High-voltage test and measuring techniques, volume 1. Springer.
- Kappes, M. S., Keiler, M., von Elverfeldt, K., and Glade, T. (2012). Challenges of analyzing multi-hazard risk: a review. Natural Hazards, 64(2):1925–1958, doi:10.1007/s11069-012-0294-2.
- Kijewski, T. and Kareem, A. (2001). Full-scale study of the behavior of tall buildings under winds. In Chase, S. B. and Aktan, A. E., editors, Health Monitoring and Management of Civil Infrastructure Systems, volume 4337, page 441–450. SPIE, doi:10.1117/12.435620.
- Knecht, A. and Manetti, L. (2001). Using GPS in structural health monitoring. In Smart Structures and Materials 2001: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, volume 4328, page 122. SPIE, doi:10.1117/12.435515.
- Komendantova, N., Kroos, D., Schweitzer, D., Leroy, C., Andreini, E., Baltasar, B., Boston, T., Keršnik, M., Botbaev, K., Cohen, J., Eismann, C., Hamm, T., Garcia-Aristizabal, A., Keršnik, M., König, M., Kröger, W., Lehmann, M., De Meyer, I., Lemmens, H., and Moeltner, K. (2016). Protecting electricity networks from natural hazards. Organization for Security and Cooperation in Europe (OSCE).
- Kwinta, A. and Gawronek, P. (2016). Prediction of Linear Objects Deformation Caused by Underground Mining Exploitation. Procedia Engineering, 161:150–156, doi:10.1016/j.proeng.2016.08.514.
- Kwinta, A., Ważydrąg, K., and Zygmunt, M. (2018). Analysis of power lines span geometry based on TLS measurements. E3S Web of Conferences, 55:00013, doi:10.1051/e3sconf/20185500013.
- Li, C., Xia, Y., Yang, M., and Wu, X. (2022). Study on TLS Point Cloud Registration Algorithm for Large-Scale Outdoor Weak Geometric Features. Sensors, 22(14):5072, doi:10.3390/s22145072.
- Li, Q., Shao, Y., Li, L., Li, J., and Hao, H. (2025). Advancements in 3D displacement measurement for civil Structures: A monocular vision approach with moving cameras. Measurement, 242:116060, doi:10.1016/j.measurement.2024.116060.
- Li, Y., Ahuja, A., and Padgett, J. E. (2012). Review of Methods to Assess, Design for, and Mitigate Multiple Hazards. Journal of Performance of Constructed Facilities, 26(1):104–117, doi:10.1061/(asce)cf.1943-5509.0000279.
- Li, Y., Du, Y., Shen, X., and Wang, R. (2014). Comparison of several transmission line tower inclination measurement methods. Hubei Electr. Power, (38):55–57.
- Liang, Q., Liang, S., Peng, J., and Bian, M. (2020). Research on wind resistance and monitoring technology for poleline structure in transmission lines. Journal of Electric Power Science and Technology, 35(1):181–186.
- Liu, S., Wang, T., Zhang, Y., Zhou, R., Dai, C., Zhang, Y., Lei, H., and Wang, H. (2022). Rethinking of learning-based 3D key-points detection for large-scale point clouds registration. International Journal of Applied Earth Observation and Geoinformation, 112:102944, doi:10.1016/j.jag.2022.102944.
- Lovse, J. W., Teskey, W. F., Lachapelle, G., and Cannon, M. E. (1995). Dynamic Deformation Monitoring of Tall Structure Using GPS Technology. Journal of Surveying Engineering, 121(1):35–40, doi:10.1061/(asce)0733-9453(1995)121:1(35).
- Lu, Z., Gong, H., Jin, Q., Hu, Q., and Wang, S. (2022). A Transmission Tower Tilt State Assessment Approach Based on Dense Point Cloud from UAV-Based LiDAR. Remote Sensing, 14(2):408, doi:10.3390/rs14020408.
- Luo, J., Yu, C., Xie, Y., Chen, B., Huang, W., Cheng, S., and Wu, Y. (2018). Review of power system security and stability defense methods under natural disasters. Power Syst. Prot. Control, 46:158–170.
- Mendis, P., Ngo, T., Haritos, N., Hira, A., Samali, B., and Cheung, J. (2007). Wind Loading on Tall Buildings. Electronic Journal of Structural Engineering, (1):41–54, doi:10.56748/ejse.641.
- Moschas, F. and Stiros, S. (2014). High accuracy measurement of deflections of an electricity transmission line tower. Engineering Structures, 80:418–425, doi:10.1016/j.engstruct.2014.09.007.
- Muszynski, Z. and Milczarek, W. (2017). Application of Terrestrial Laser Scanning to Study the Geometry of Slender Objects. IOP Conference Series: Earth and Environmental Science, 95:042069, doi:10.1088/1755-1315/95/4/042069.
- Nguyen, V. N., Jenssen, R., and Roverso, D. (2018). Automatic autonomous vision-based power line inspection: A review of current status and the potential role of deep learning. International Journal of Electrical Power and Energy Systems, 99:107–120, doi:10.1016/j.ijepes.2017.12.016.
- Olsen, M. J., Kuester, F., Chang, B. J., and Hutchinson, T. C. (2010). Terrestrial Laser Scanning-Based Structural Damage Assessment. Journal of Computing in Civil Engineering, 24(3):264–272, doi:10.1061/(asce)cp.1943-5487.0000028.
- Pandžić, J., Pejić, M., Božić, B., and Erić, V. (2016). Tls in determining geometry of a tall structure. In Engineering geodesy for construction works, industry and research, proceedings of the international symposium on engineering geodesy (SIG 2016), Varaždin, Croatia, 20–22 May 2016, pages 279–290.
- Park, H. S., Sohn, H. G., Kim, I. S., and Park, J. H. (2007). Application of GPS to monitoring of wind-induced responses of high-rise buildings. The Structural Design of Tall and Special Buildings, 17(1):117–132, doi:10.1002/tal.335.
- Rizzo, F., Caracoglia, L., Maddaloni, G., Sabbà, M. F., and Foti, D. (2024). Exploring multi-hazard effects on a tall building and its non-structural elements through simultaneous earthquake and wind loading. Journal of Building Engineering, 91:109489, doi:10.1016/j.jobe.2024.109489.
- Roberts, G., Meng, X., Dodson, A., and Cosser, E. (2002). Geodetic signal diagnosis and its applications to structural deformation. In 2nd Symposium on Geodesy for Geotechnical and Structural Engineering, Berlin, Germany, 21–24 May 2002, pages 111–122.
- Roberts, G. W., Tang, X., and Brown, C. J. (2018). Measurement and correlation of displacements on the Severn Suspension Bridge using GPS. Applied Geomatics, 11(2):161–176, doi:10.1007/s12518-018-00251-6.
- Seco, A., Tirapu, F., Ramírez, F., García, B., and Cabrejas, J. (2007). Assessing building displacement with GPS. Building and Environment, 42(1):393–399, doi:10.1016/j.buildenv.2005.07.027.
- Sohn, G., Jwa, Y., and Kim, H. B. (2012). Automatic powerline scene classification and reconstruction using airborne LiDAR data. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, I–3:167–172, doi:10.5194/isprsannals-i-3-167-2012.
- Su, Y. (2020). Construction Risk Prevention and Management Countermeasures of High-Rise Buildings in the New Era. Construction and Design For Project, pages 224–226.
- Szolomicki, J. and Golasz-Szolomicka, H. (2019). Technological Advances and Trends in Modern High-Rise Buildings. Buildings, 9(9):193, doi:10.3390/buildings9090193.
- Tran, T. S. (2023). Geodetic monitoring of high-rise structures according to satellite determinations. E3S Web of Conferences, 392:02041, doi:10.1051/e3sconf/202339202041.
- Vezočnik, R., Ambrožič, T., Sterle, O., Bilban, G., Pfeifer, N., and Stopar, B. (2009). Use of Terrestrial Laser Scanning Technology for Long Term High Precision Deformation Monitoring. Sensors, 9(12):9873–9895, doi:10.3390/s91209873.
- Wang, Y., Han, J., Zhao, Q., and Wang, Y. (2017). The method of power transmission tower inclination detection based on UAV image. Computer Simulation, 34(7):426–431.
- Wujanz, D. (2016). Terrestrial laser scanning for geodetic deformation monitoring. Technische Universitaet Berlin (Germany).
- Yang, F., Wen, X., Wang, X., Li, X., and Li, Z. (2021). A Model Study of Building Seismic Damage Information Extraction and Analysis on Ground-Based LiDAR Data. Advances in Civil Engineering, 2021(1), doi:10.1155/2021/5542012.
- Yu, H., Wang, Z., Zhou, Q., Ma, Y., Wang, Z., Liu, H., Ran, C., Wang, S., Zhou, X., and Zhang, X. (2023). Deep-Learning-Based Semantic Segmentation Approach for Point Clouds of Extra-High-Voltage Transmission Lines. Remote Sensing, 15(9):2371, doi:10.3390/rs15092371.
