Have a personal or library account? Click to login
GNSS sites at Hornsund reveal increase of land uplift rate due to recent acceleration of deglaciation at Svalbard Cover

GNSS sites at Hornsund reveal increase of land uplift rate due to recent acceleration of deglaciation at Svalbard

By: Marcin Rajner  
Open Access
|Dec 2025

References

  1. A, G., Wahr, J., and Zhong, S. (2013). Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophysical Journal International, 192(2):557–572, doi:10.1093/gji/ggs030.
  2. Aas, K. S., Dunse, T., Collier, E., Schuler, T. V., Berntsen, T. K., Kohler, J., and Luks, B. (2016). The climatic mass balance of Svalbard glaciers: a 10-year simulation with a coupled atmosphere– glacier mass balance model. The Cryosphere, 10(3):1089–1104, doi:10.5194/tc-10-1089-2016.
  3. Bertiger, W., Bar-Sever, Y., Dorsey, A., Haines, B., Harvey, N., Hemberger, D., Heflin, M., Lu, W., Miller, M., Moore, A. W., Murphy, D., Ries, P., Romans, L., Sibois, A., Sibthorpe, A., Szilagyi, B., Vallisneri, M., and Willis, P. (2020). GipsyX/ RTGx, a new tool set for space geodetic operations and research. Advances in Space Research, 66(3):469–489, doi: https://doi.org/10.1016/j.asr.2020.04.015.
  4. Błaszczyk, M., Luks, B., Pętlicki, M., Puczko, D., Ignatiuk, D., Laska, M., Jania, J., and Głowacki, P. (2024). High temporal resolution records of the velocity of Hansbreen, a tidewater glacier in Svalbard. Earth SystemScience Data, 16(4):1847–1860, doi:10.5194/essd-16-1847-2024.
  5. Blewitt, G. and Lavallée, D. (2002). Effect of annual signals on geodetic velocity. Journal of Geophysical Research: Solid Earth, 107(B7):ETG 9–1–ETG 9–11, doi: https://doi.org/10.1029/2001JB000570.
  6. Bos, M. S., Fernandes, R. M. S., Williams, S. D. P., and Bastos, L. (2013). Fast error analysis of continuous GNSS observations with missing data. Journal of Geodesy, 87(4):351–360, doi:10.1007/s00190-012-0605-0.
  7. Farrell, W. E. (1972). Deformation of the Earth by surface loads. Reviews of Geophysics, 10(3):761–797, doi: 10.1029/RG010i003p00761.
  8. Fischer, E. M. and Knutti, R. (2015). Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nature Climate Change, 5(6):560–564, doi:10.1038/nclimate2617.
  9. Gardner, A. S.,Moholdt, G., Cogley, J. G.,Wouters, B., Arendt, A. A., Wahr, J., Berthier, E., Hock, R., Pfeffer,W. T., Kaser, G., Ligtenberg, S. R. M., Bolch, T., Sharp, M. J., Hagen, J. O., van den Broeke, M. R., and Paul, F. (2013). A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009. Science, 340(6134):852–857, doi:10.1126/science.1234532.
  10. Jiang, W., Li, Z., van Dam, T., and Ding, W. (2013). Comparative analysis of different environmental loading methods and their impacts on the GPS height time series. Journal of Geodesy, 87(7):687–703, doi:10.1007/s00190-013-0642-3.
  11. Kierulf,H. P., Kohler, J., Boy, J.-P., Geyman, E. C.,Mémin, A., Omang, O. C. D., Steffen, H., and Steffen, R. (2022). Time-varying uplift in Svalbard—an effect of glacial changes. Geophysical Journal International, 231(3):1518–1534, doi:10.1093/gji/ggac264.
  12. Kierulf, H. P., Plag, H.-P., and Kohler, J. (2009). Surface deformation induced by present-day ice melting in Svalbard. Geophysical Journal International, 179(1):1–13, doi:10.1111/j.1365-246X.2009.04322.x.
  13. Kierulf, H. P., van Pelt,W. J. J., Petrov, L., Dähnn, M., Kirkvik, A.- S., and Omang, O. (2021). Seasonal glacier and snow loading in Svalbard recovered from geodetic observations. Geophysical Journal International, 229(1):408–425, doi:10.1093/gji/ggab482.
  14. Mémin, A., Spada, G., Boy, J.-P., Rogister, Y., and Hinderer, J. (2014). Decadal geodetic variations in Ny-Ålesund (Svalbard): role of past and present ice-mass changes. Geophysical Journal International, 198:285–297, doi:10.1093/gji/ggu134.
  15. Mémin, A., Rogister, Y., Hinderer, J., Omang, O. C., and Luck, B. (2011). Secular gravity variation at Svalbard (Norway) fromground observations and GRACE satellite data. Geophysical Journal International, 184(3):1119–1130, doi:10.1111/j.1365-246X.2010.04922.x.
  16. Omang, O. C. D. and Kierulf, H. P. (2011). Past and present-day ice mass variation on Svalbard revealed by superconducting gravimeter and GPS measurements. Geophysical Research Letters, 38(22), doi:10.1029/2011GL049266. L22304.
  17. Peltier, W. R., Argus, D. F., and Drummond, R. (2015). Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a)model. Journal of Geophysical Research: Solid Earth, 120(1):450–487, doi:10.1002/2014JB011176. 2014JB011176.
  18. Rajner, M. (2010). Some remarks on determining short-period changes in glacier surface velocity using gps technique — case study of Hans glacier example. Geodesy and Cartography, 59(1):39–47, doi:10.2478/v10277-012-0007-8.
  19. Rajner, M. (2018). Detection of ice mass variation using gnss measurements at Svalbard. Journal of Geodynamics, 121:20–25, doi:10.1016/j.jog.2018.06.001.
  20. Schuler, T. V., Benestad, R. E., Isaksen, K., Kierulf, H. P., Kohler, J., Moholdt, G., and Schmidt, L. S. (2025). Svalbard’s 2024 record summer: An early view of Arctic glacier meltdown? Proceedings of the National Academy of Sciences, 122(34):e2503806122, doi:10.1073/pnas.2503806122.
  21. Shepherd, A., Ivins, E. R., A, G., Barletta, V. R., Bentley,M. J., Bettadpur, S., Briggs, K. H., Bromwich, D. H., Forsberg, R., Galin, N., Horwath, M., Jacobs, S., Joughin, I., King, M. A., Lenaerts, J. T.M., Li, J., Ligtenberg, S. R.M., Luckman, A., Luthcke, S. B., McMillan, M., Meister, R., Milne, G., Mouginot, J., Muir, A., Nicolas, J. P., Paden, J., Payne, A. J., Pritchard, H., Rignot, E., Rott, H., Sørensen, L. S., Scambos, T. A., Scheuchl, B., Schrama, E. J. O., Smith, B., Sundal, A. V., van Angelen, J. H., van de Berg, W. J., van den Broeke, M. R., Vaughan, D. G., Velicogna, I., Wahr, J., Whitehouse, P. L.,Wingham, D. J., Yi, D., Young, D., and Zwally, H. J. (2012). A Reconciled Estimate of Ice-SheetMass Balance. Science, 338(6111):1183–1189, doi:10.1126/science.1228102.
  22. Stroeve, J. C., Serreze, M. C., Holland, M. M., Kay, J. E., Malanik, J., and Barrett, A. P. (2011). The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Climatic Change, 110(3–4):1005–1027, doi:10.1007/s10584-011-0101-1.
  23. Wunderling, N., Willeit, M., Donges, J. F., and Winkelmann, R. (2020). Global warming due to loss of large ice masses and Arctic summer sea ice. Nature Communications, 11(1), doi:10.1038/s41467-020-18934-3.
DOI: https://doi.org/10.2478/rgg-2025-0020 | Journal eISSN: 2391-8152 | Journal ISSN: 0867-3179
Language: English
Page range: 96 - 100
Submitted on: Nov 8, 2025
Accepted on: Dec 9, 2025
Published on: Dec 17, 2025
Published by: Warsaw University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Marcin Rajner, published by Warsaw University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.