Have a personal or library account? Click to login
Application of the Simulated Annealing algorithm and robust weight functions for identification of constant reference points in 3D deformation analysis Cover

Application of the Simulated Annealing algorithm and robust weight functions for identification of constant reference points in 3D deformation analysis

Open Access
|Dec 2025

References

  1. Adamczewski, Z. (1979). Algorytm numerycznej kontroli przylegania obiektów (Algorithm for numerical control of object adjacency). Geodezja i Kartografia, 27(3):195–200.
  2. Ambrožič, T., Mulahusić, A., Tuno, N., Topoljak, J., Hajdar, A., and Kogoj, D. (2019). Deformation analysis with robust methods in geodetic nets. Geodetski vestnik, 63(02):163–178, doi:10.15292/geodetski-vestnik.2019.02.163-178.
  3. Amiri-Simkooei, A., Alaei-Tabatabaei, S., Zangeneh-Nejad, F., and Voosoghi, B. (2017). Stability analysis of deformation-monitoring network points using simultaneous observation adjustment of two epochs. Journal of Surveying Engineering, 143(1):04016020, doi:10.1061/(ASCE)SU.1943-5428.0000195.
  4. Baselga, S. (2007). Global optimization solution of robust estimation. Journal of Surveying Engineering, 133(3):123–128, doi:10.1061/(ASCE)0733-9453(2007)133:3(123).
  5. Baselga, S., García-Asenjo, L., and Garrigues, P. (2015). Deformation monitoring and the maximum number of stable points method. Measurement, 70:27–35, doi:10.1016/j.measurement.2015.03.034.
  6. Batilović, M., Ðurović, R., Sušić, Z., Kanović, Z., and Cekić, Z. (2021). Robust Estimation of Deformation from Observation Differences Using Some Evolutionary Optimisation Algorithms. Sensors, 22(1):159, doi:10.3390/s22010159.
  7. Berne, J. L. and Baselga, S. (2004). First-order design of geodetic networks using the simulated annealing method. Journal of Geodesy, 78(1–2), doi:10.1007/s00190-003-0365-y.
  8. Brunner, F., Coleman, R., and Hirsch, B. (1981). A comparison of computation methods for crustal strains from geodetic measurements. In Developments in Geotectonics, volume 16, pages 281–298. Elsevier, doi:10.1016/B978-0-444-41953-8.50037-2.
  9. Caspary, W. and Borutta, H. (1987). Robust estimation in deformation models. Survey Review, 29(223):29–45, doi:10.1179/sre.1987.29.223.29.
  10. Chen, Y. Q. (1984). Analysis of deformation surveys – A generalized method. Technical Report 94, Dept. of Surveying Engineering; University of New Brunswick: Fredricton, NB, Canada.
  11. Chrzanowski, A. (1986). Geotechnical and other non-geodetic methods in deformation measurements. In Proc. Deformation Measurements Workshop, Massachusetts Institute of Technology, Boston, pages 112–153.
  12. Denli, H. H. and Deniz, R. (2003). Global congruency test methods for GPS networks. Journal of Surveying Engineering, 129(3):95–98, doi:10.1061/(ASCE)0733-9453(2003)129:3(95).
  13. Doma, M. I. and Sedeek, A. A. (2014). Comparison of PSO, GAs and Analytical Techniques in Second-Order Design of Deformation Monitoring Networks. Journal of Applied Geodesy, 8(1), doi:10.1515/jag-2013-0013.
  14. Duchnowski, R. and Wiśniewski, Z. (2014). Comparison of two unconventional methods of estimation applied to determine network point displacement. Survey Review, 46(339):401–405, doi:10.1179/1752270614y.0000000127.
  15. Duffy, M., Hill, C., Whitaker, C., Chrzanowski, A., Lutes, J., and Bastin, G. (2001). An automated and integrated monitoring program for Diamond Valley Lake in California. In Proceedings of the 10th FIG symposium on deformation measurements, volume 19, page 22.
  16. Fazilova, D. S. and Sichugova, L. V. (2021). Deformation analysis based on GNSS measurements in Tashkent region. E3S Web of Conferences, 227:04002, doi:10.1051/e3sconf/202122704002.
  17. García-Asenjo, L., Martínez, L., Baselga, S., and Garrigues, P. (2019). Establishment of a multi-purpose 3D geodetic reference frame for deformation monitoring in Cortes de Pallás (Spain). In Proceedings of the 4th Joint International Symposium on Deformation Monitoring (JISDM), Athens, Greece, pages 15–17.
  18. García-Asenjo, L., Martínez, L., Baselga, S., Garrigues, P., and Luján, R. (2023). Design, establishment, analysis, and quality control of a high-precision reference frame in Cortes de Pallás (Spain). Applied Geomatics, 15(2):359–370, doi:10.1007/s12518-022-00481-9.
  19. Henriques, M. J. and Casaca, J. (2004). Quality control of a dam geodetic surveying system. In Proceedings of the 1st FIG International Symposium on Engineering Surveys for Construction Works and Structural Engineering, Nottingham, United Kingdom. FIG.
  20. Huber, P. J. (1964). Robust Estimation of a Location Parameter. The Annals of Mathematical Statistics, 35(1):73–101, doi:10.1214/aoms/1177703732.
  21. Kadaj, R. (1978). Wyrównanie z obserwacjami odstającymi (Adjustment with outliers). Przegląd Geodezyjny, 8:252–253.
  22. Karsznia, K., Zaczek-Peplinska, J., Łapiński, S., Odziemczyk, W., Piasta, Ł., and Saloni, L. (2022). The functionality assessment of geodetic monitoring systems for analyzing structural elements. In XXVII FIG Congress 2022: Volunteering for the future – Geospatial excellence for a better living.
  23. Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598):671–680, doi:10.1126/science.220.4598.671.
  24. Krarup, T. (1980). Gotterdammerung over least squares adjustment. In Proc. 14th Congress of the International Society of Photogrammetry, volume 3, pages 369–378.
  25. Lehmann, R. and Lösler, M. (2017). Congruence analysis of geodetic networks – hypothesis tests versus model selection by information criteria. Journal of Applied Geodesy, 11(4):271–283, doi:10.1515/jag-2016-0049.
  26. Maghsoudi, A. and Kalantari, B. (2014). Monitoring Instrumentation in Underground Structures. Open Journal of Civil Engineering, 04(02):135–146, doi:10.4236/ojce.2014.42012.
  27. Mahboub, V., Ebrahimzadeh, S., Baghani, A., Rastegar, A., and Zanganeh, M. (2024). L1-norm optimisation of rank deficient GNSS networks by an improved Grey Wolf method. Survey Review, 56(399):582–588, doi:10.1080/00396265.2024.2327124.
  28. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953). Equation of State Calculations by Fast Computing Machines. The Journal of Chemical Physics, 21(6):1087–1092, doi:10.1063/1.1699114.
  29. Moore, J. R., Gischig, V., Button, E., and Loew, S. (2010). Rock-slide deformation monitoring with fiber optic strain sensors. Natural Hazards and Earth System Sciences, 10(2):191–201, doi:10.5194/nhess-10-191-2010.
  30. Mrówczyńska, M. and Sztubecki, J. (2019). The use of evolutionary algorithms for designing an optimum structure of a geodesic measurement and control network. MATEC Web of Conferences, 262:07008, doi:10.1051/matecconf/201926207008.
  31. Neitzel, F. (2005). Die Methode der maximalen Untergruppe (MSS) und ihre Anwendung in der Kongruenzuntersuchung geodätischer Netze. ZfV-Zeitschrift für Geodäsie, Geoinformation und Land-management, (zfv 2/2005):82–91.
  32. Niemeier, W. (1979). Zur Kongruenz mehrfach beobachteter geodätischer Netze. Fachrichtung Vermessungswesen d. Univ., Universität Hannover.
  33. Nowel, K. and Kamiński, W. (2014). Robust estimation of deformation from observation differences for free control networks. Journal of Geodesy, 88(8):749–764, doi:10.1007/s00190-014-0719-7.
  34. Odziemczyk, W. (2020). Application of simulated annealing algorithm for 3D coordinate transformation problem solution. Open Geosciences, 12(1):491–502, doi:10.1515/geo-2020-0038.
  35. Odziemczyk, W. (2021). Application of Optimization Algorithms for Identification of Reference Points in a Monitoring Network. Sensors, 21(5):1739, doi:10.3390/s21051739.
  36. Odziemczyk, W. (2023). Comparison of selected reliability optimization methods in application to the second order design of geodetic network. Journal of Applied Geodesy, 18(2):223–236, doi:10.1515/jag-2023-0024.
  37. Odziemczyk, W. (2025a). Application of the Metaheuristic Algorithm for Identification of the Constant Reference Points in 3D Deformation Analysis. In XVII International Science and Technology Conference CURRENT PROBLEMS IN ENGINEERING SURVEYING “New challenges for engineering surveying in civil engineering and environmental monitoring “, May, 22-23, 2025, Józefosław, Poland.
  38. Odziemczyk, W. (2025b). Hybrid algorithm for identification of stable reference points in a monitoring network. Journal of Applied Geodesy, doi:10.1515/jag-2024-0083.
  39. Prószyński, W. and Kwaśniak, M. (2015). Podstawy geodezyjnego wyznaczania przemieszczeń: pojęcia i elementy metodyki (Basics of geodetic displacement determination: concepts and elements of methodology). Warsaw University of Technology Press: Warsaw, Poland.
  40. Prószyński, W. (2010). Problem of partitioned bases in monitoring vertical displacements for elongated structures. Geodesy and Cartography, 59(2), doi:10.2478/v10277-012-0001-1.
  41. Taşçi, L. (2008). Dam deformation measurements with GPS. Geodesy and Cartography, 34(4):116–121, doi:10.3846/1392-1541.2008.34.116-121.
  42. Wujanz, D., Avian, M., Krueger, D., and Neitzel, F. (2018). Identification of stable areas in unreferenced laser scans for automated geomorphometric monitoring. Earth Surface Dynamics, 6(2):303–317, doi:10.5194/esurf-6-303-2018.
  43. Yetkin, M. (2013). Metaheuristic optimisation approach for designing reliable and robust geodetic networks. Survey Review, 45(329):136–140, doi:10.1080/17522706.2013.12287495.
  44. Zhou, W., Zhang, W., Yang, X., and Wu, W. (2021). An Improved GNSS and InSAR Fusion Method for Monitoring the 3D Deformation of a Mining Area. IEEE Access, 9:155839–155850, doi:10.1109/access.2021.3129521.
DOI: https://doi.org/10.2478/rgg-2025-0019 | Journal eISSN: 2391-8152 | Journal ISSN: 0867-3179
Language: English
Page range: 86 - 95
Submitted on: Aug 13, 2025
Accepted on: Dec 3, 2025
Published on: Dec 17, 2025
Published by: Warsaw University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Waldemar Odziemczyk, published by Warsaw University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.