Have a personal or library account? Click to login
Effects of observation loss in geodetic determination of horizontal displacements Cover

Effects of observation loss in geodetic determination of horizontal displacements

Open Access
|Dec 2025

References

  1. Act (1994). Act of 7 July, 1994 Construction Law. Act. Journal of Laws 2025, Item 725, Poland.
  2. Act (2017). Act of of 20 July, 2017 Water Law. Act. Journal of Laws 2025, Item 216, Poland.
  3. Agapie Mereuta, I., Luca, M., Gherasim, P. M., and Dominte Croitoru, V. (2022). Design Of GNSS Networks For Monitoring Earth Dams Deformations. Journal of Applied Life Sciences and Environment, 54(4):354–369, doi:10.46909/journalalse-2021-031.
  4. Alba, M., Fregonese, L., Prandi, F., Scaioni, M., Valgoi, P., et al. (2006). Structural monitoring of a large dam by terrestrial laser scanning. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(5):6.
  5. Amaral, P., Malheiro, A., Marques, F., Moniz, L., Furtado, S., and Loura, N. (2020). The Use of Total Station for Monitoring Mass Movements: Application to Fajãzinha Landslide at Flores Island (Azores Archipelago), page 59–62. Springer International Publishing, doi:10.1007/978-3-030-34397-2_12.
  6. Aswathi, J., Binoj Kumar, R., Oommen, T., Bouali, E., and Sajinkumar, K. (2022). InSAR as a tool for monitoring hydropower projects: A review. Energy Geoscience, 3(2):160–171, doi:10.1016/j.engeos.2021.12.007.
  7. Bagherbandi, M. (2016). Deformation monitoring using different least squares adjustment methods: A simulated study. KSCE Journal of Civil Engineering, 20(2):855–862, doi:10.1007/s12205-015-0454-5.
  8. Barzaghi, R., Cazzaniga, N., De Gaetani, C., Pinto, L., and Tornatore, V. (2018). Estimating and Comparing Dam Deformation Using Classical and GNSS Techniques. Sensors, 18(3):756, doi:10.3390/s18030756.
  9. Bea, R. and Johnson, T. (2017). Root causes analyses of the Oroville dam gated spillway failures and other developments. Cal Alumni Association: Berkeley, CA, USA.
  10. Bergkvist, J. (2015). Optimal Design of Network for Control of Total Station Instruments. Master’s thesis, KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Satellite Positioning.
  11. Burdick, R. K. and A., G. F. (1992). Confidence Intervals on Variance Components.
  12. Cardoso, F. H. C., Giorgini, M. G., and Paula, A. D. (2020). Diretrizes para o monitoramento de deformações e deslocamentos em barragens e estruturas de mineração utilizando GNSS. In Congresso Brasileiro de Mecânica dos Solos e Engenharia Geotécnica, Cobramseg, page 1415–1421. ABMS, doi:10.4322/cobramseg.2022.0178.
  13. Chrzanowski, A., Szostak, A., and Steeves, R. (2011). Reliability and efficiency of dam deformation monitoring schemes. In Proceedings of the 2011 Annual Conference of Canadian Dam Association (CDA/ACB), Fredericton, NB, Canada, volume 15.
  14. Dmitruk, Z. (2022). Zbiorniki zaporowe – aktualne zagadnienia ich funkcjonowania i oceny stanu bezpieczeństwa (Damming reservoirs – current issues concerning their operation and safety status assessment). GOSPODARKA WODNA, 1(10):4–12, doi:10.15199/22.2022.10.1.
  15. Dwitya, R., Hendrianto Pratomo, A., Agung Cahyadi, T., Rianto Budi Nugroho, A., Prio Utomo, D., and Sulo, C. (2024). Slope Stability Monitoring of Hydroelectric Dam and Upstream Water-shed Areas Utilizing Satellite Interferometric Synthetic Aperture Radar (InSAR). IOP Conference Series: Earth and Environmental Science, 1339(1):012037, doi:10.1088/1755-1315/1339/1/012037.
  16. Dziewański, J. (1998). Warunki geologiczno-inżynierskie podłoża Zespołu Zbiorników Wodnych Czorsztyn-Niedzica i Sromowce Wyżne im. Gabriela Narutowicza na Dunajcu (Geological-engineering conditions of the substrate of water dams Czorsztyn and Sromowce Wyżne). Kraków: IGSMIE PAN Inst. Gosp. Sur. Min. Energ.
  17. Ehiorobo, J. O. and Irughe-Ehigiator, R. (2011). Monitoring for horizontal movement in an earth dam using differential GPS. Journal of Emerging Trends in Engineering and Applied Sciences, 2(6):908–913.
  18. Farzaneh, S., Safari, A., and Parvazi, K. (2021). Improving Dam Deformation Analysis Using Least-Squares Variance Component Estimation and Tikhonov Regularization. Journal of Surveying Engineering, 147(1), doi:10.1061/(asce)su.1943-5428.0000339.
  19. Fiedler, K. (2007). Awarie i katastrofy zapór-zagrożenia, ich przyczyny i skutki oraz działania zapobiegawcze: praca zbiorowa (Dam failures and disasters - hazards, their causes and effects, and preventive measures). Instytut Meteorologii i Gospodarki Wodnej, Warsaw.
  20. Golonka, J., Krobicki, M., and Waśkowska, A. (2018). The Pieniny Klippen Belt in Poland. Geology, Geophysics and Environment, 44(1):111, doi:10.7494/geol.2018.44.1.111.
  21. Grafarend, E. W. and Sansò, F. (1985). Optimization and Design of Geodetic Networks. Springer Berlin Heidelberg, doi:10.1007/978-3-642-70659-2.
  22. Gruszecka, A. (2016). Wodne budowle piętrzące. Nadzór nad stanem technicznym i stanem bezpieczeństwa (Hydraulic Structures. Supervision of Technical Condition and Safety). Kontrola Państwowa, 61(5 (370):102–115.
  23. Guler, G., Kilic, H., Hosbas, G., and Ozaydin, K. (2006). Evaluation of the movements of the dam embankments by means of geodetic and geotechnical methods. Journal of surveying engineering, 132(1):31–39, doi:10.1061/(ASCE)0733-9453(2006)132:1(31).
  24. Hollins, L. X., Eisenberg, D. A., and Seager, T. P. (2018). Risk and Resilience at the Oroville Dam. Infrastructures, 3(4):49, doi:10.3390/infrastructures3040049.
  25. International Commission on Large Dams (ICOLD) (2018). Dam Surveillance Guide.
  26. Kledyński, Z. (2011a). Monitoring i diagnostyka budowli hydrotechnicznych. cz. 1 (Monitoring and diagnostics of hydrotechnical structures. P. 1). Nowoczesne Budownictwo Inżynieryjne, 35(2):54–61.
  27. Kledyński, Z. (2011b). Monitoring i diagnostyka budowli hydrotechnicznych. cz. 2 (Monitoring and diagnostics of hydrotechnical structures. P. 2). Nowoczesne Budownictwo Inżynieryjne, 36(3):36–38.
  28. Kuras, P., Ortyl, L., Owerko, T., and Borecka, A. (2018). Geodetic monitoring of earth-filled flood embankment subjected to variable loads. Reports on Geodesy and Geoinformatics, 106(1):9–18, doi:10.2478/rgg-2018-0009.
  29. Lu, Z., Qu, Y., and Qiao, S. (2014). Geodesy: Introduction to Geodetic Datum and Geodetic Systems. Springer Berlin Heidelberg, doi:10.1007/978-3-642-41245-5.
  30. Maltese, A., Pipitone, C., Dardanelli, G., Capodici, F., and Muller, J.-P. (2021). Toward a Comprehensive Dam Monitoring: On-Site and Remote-Retrieved Forcing Factors and Resulting Displacements (GNSS and PS–InSAR). Remote Sensing, 13(8):1543, doi:10.3390/rs13081543.
  31. Mazzanti, P., Antonielli, B., Sciortino, A., Scancella, S., and Bozzano, F. (2021). Tracking Deformation Processes at the Legnica Glogow Copper District (Poland) by Satellite InSAR—II: Żelazny Most Tailings Dam. Land, 10(6):654, doi:10.3390/land10060654.
  32. Merkle, W. J. and Myers, J. J. (2004). Use of the total station for load testing of retrofitted bridges with limited access. In Liu, S.-C., editor, Smart Structures and Materials 2004: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, volume 5391, page 687. SPIE, doi:10.1117/12.539992.
  33. Milanović, P., Maximovich, N. G., and Meshcheriakova, O. (2019). Monitoring, page 109–114. Springer International Publishing, doi:10.1007/978-3-030-18521-3_8.
  34. Negrila, A. and Onose, D. (2013). Dam monitoring using terrestrial laser scanning. Journal of Geodesy and Cadastre, (15):149–158.
  35. Novak, P., Moffat, A., Nalluri, C., and Narayanan, R. (2007). Hydraulic Structures (4th Edition). CRC Press.
  36. Nowak, B., Ptak, M., and Sojka, M. (2022). Monitoring of the Technical Condition and Optimisation of the Functioning of Small Hydraulic Structures in Poland: The Case Study of the Oświecim Weir. Buildings, 12(10):1527, doi:10.3390/buildings12101527.
  37. Nowak, E. and Odziemczyk, W. (2018). Impact analysis of observation coupling on reliability indices in a geodetic network. Reports on Geodesy and Geoinformatics, 106(1):1–7, doi:10.2478/rgg-2018-0008.
  38. Odziemczyk, W. (2014). Analiza stałości bazy odniesienia na przykładzie monitoringu przemieszczeń pionowych Zapory Zatonie (Analysis of reference points stability on the example of Zatonie Water Dam horizontal displacements monitoring). In Kulesza, J. and Wyczałek, I., editors, Teoretyczne Podstawy Budownictwa (Theoretical Foundations of Civil Engineering), pages 19–26. Publishing House of the Warsaw University of Technology.
  39. Oro, S., Mafioleti, T., Chaves Neto, A., Garcia, S., and Neumann Júnior, C. (2016). Study of the influence of temperature and water level of the reservoir about the displacement of a concrete dam. International Journal of Applied Mechanics and Engineering, 21(1):107–120, doi:10.1515/ijame-2016-0007.
  40. Ortelecan, M., Ciotlaus, A., Salagean, T., Ficior, D., Pop, N., Luput, I., and Vele, D. (2012). Considerations Regarding Hydro Power Station Monitoring Objectives Through Geodetic Measurements. Bulletin UASVM Horticulture, 69:2.
  41. Prószyński, W. (2014). Seeking realistic upper-bounds for internal reliability of systems with uncorrelated observations. Geodesy and Cartography, 63(1):111–121, doi:10.2478/geocart-2014-0009.
  42. Rebmeister, M., Schenk, A., Weisgerber, J., Westerhaus, M., Hinz, S., Andrian, F., and Vonié, M. (2025). Ground-based InSAR and GNSS integration for enhanced dam monitoring. Applied Geomatics, 17(2):393–400, doi:10.1007/s12518-025-00622-w.
  43. Regulation (2007). Regulation of the Minister of the Environment of April 20, 2007 on the technical conditions to be met by hydraulic engineering structures and their location. Act. Journal of Laws, 2007, No. 86, Item 579, Poland.
  44. Ribeiro, F., Fazan, J., Netto, N., Blitzkow, D., Da Fonseca Junior, E., Cintra, J., Fiorini, A., and Neves, C. (2008). Comparison between geodetic technology and plumb lines in monitoring of displacements on Itaipu Dam. In 13th International Symposium on Deformation Measurements and Analysis, International Federation of Surveyors (FIG), Lisbon, Portugal.
  45. Salagean, T., Onose, D., Rusu, T., Şuba, E., and Chiorean, S. (2017). Aspects regarding the analysis of horizontal displacements at Cumpana Dam, Arges County. AgroLife Scientific Journal, 6(1):237–242.
  46. Scaioni, M., Marsella, M., Crosetto, M., Tornatore, V., and Wang, J. (2018). Geodetic and Remote-Sensing Sensors for Dam Deformation Monitoring. Sensors, 18(11):3682, doi:10.3390/s18113682.
  47. Staroverov, V. and Haikin, D. (2020). Geodesic Monitoring Of Hydrotechnical Structures Using an Automated Observation System. Urban development and spatial planning, 0(74):298–307, doi:10.32347/2076-815x.2020.74.298-307.
  48. Szostak-Chrzanowski, A. and Massiéra, M. (2006). Relation between monitoring and design aspects of large earth dams. In Proceedings, 3rd IAG Symposium on Geodesy for Geotechnical and Structural Engineering and 12th FIG Symposium on Deformation Measurements, Baden, Austria. FIG.
  49. Talich, M. (2016). The Deformation Monitoring of Dams by the Ground-Based InSAR Technique – Case Study of Concrete Hydropower Dam Orlik. International Journal of Advances in Agricultural and Environmental Engineering, 3(1), doi:10.15242/ijaaee.a0416051.
  50. Taşçi, L. (2008). Dam deformation measurements with GPS. Geodesy and Cartography, 34(4):116–121, doi:10.3846/1392-1541.2008.34.116-121.
  51. Tretyak, K. and Palianytsia, B. (2022). Research of the environmental temperature influence on the horizontal displacements of the Dnieper hydroelectric station dam (according to GNSS measurements). Reports on Geodesy and Geoinformatics, 113(1):1–10, doi:10.2478/rgg-2022-0001.
  52. US Army Corps of Engineers (2018). Structural Deformation Surveying. Engineer Manual EM 1110-2-1009.
  53. Zaczek-Peplinska, J., Pasik, M., Adamek, A., Adamek, A., Kołakowska, M., and Łapiński, S. (2013). Monitoring Technical Conditions Of Engineering Structures Using The Terrestrial Laser Scanning Technology. Reports on Geodesy and Geoinformatics, 95(1):1–10, doi:10.2478/rgg-2013-0008.
  54. Zaczek-Peplinska, J., Podawca, K., and Karsznia, K. (2018). Reliability of geodetic control measurements of high dams as a guarantee of safety of the construction and the natural environment. Bulletin of the Polish Academy of Sciences: Technical Sciences, 66(1):87–98, doi:10.24425/119062.
  55. Šarkanović Bugarinović, M., Govedarica, M., Ristic, A., Bugarinović, Z., and Ruskovski, I. (2023). Analysis and application of terrestrial laser scanning algorithms for dam monitoring. In Proceedings of the International Scientific Conference iNDiS 2023 Planning, Design, Construction and Building Renewal, Vrdnik, Serbia.
DOI: https://doi.org/10.2478/rgg-2025-0018 | Journal eISSN: 2391-8152 | Journal ISSN: 0867-3179
Language: English
Page range: 75 - 85
Submitted on: Jul 18, 2025
Accepted on: Nov 14, 2025
Published on: Dec 1, 2025
Published by: Warsaw University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Joanna Swatowska, Przemysław Kuras, published by Warsaw University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.